Finding adversarial examples

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Finding adversarial examples

- For input X
- Find ϵ
- Such that $f(\mathbf{x} + \epsilon) \neq f(\mathbf{x})$

Fast gradient sign

- Assume networks are locally linear
- Optimal attack with $\|e\|_{\infty} \leq c$

•
$$\epsilon = \operatorname{sign}\left(\nabla_{\mathbf{x}} \mathscr{C}(f(\mathbf{x}), y)\right)$$

Projected gradient descent

- Networks are not linear
- Optimize for the attack using gradient descent
 - maximize $_{\epsilon} \ell \left(f(\mathbf{x} + \epsilon), y \right)$

• s.t. $\|\varepsilon\|_{\infty} < c$

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al., ICLR 2018

Global adversarial attacks

- Attacks all possible inputs at once
 - PGD on entire dataset
- Attack not input specific
- Attack transfers between architectures
 - Dataset specific?

Universal adversarial perturbations, Moosavi-Dezfooli et al., CVPR 2017