Sampling in sequence models

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Sampling

- Example temporal convolutional network
 - Autoregressive

$$P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot ...$$

Objective find

•
$$\hat{y} = \arg \max_{y} P(y_0, y_1, y_2, ...)$$

X	All	your	•••
Causal conv			
$P(y_0)$	$P(y_1)$	$P(y_2)$	
All	your	base	•••

Greedy sampling

$$P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot$$

. . .

- Pick sequentially $\hat{y}_t = \arg \max_{y_t} P(y_t | x, \hat{y}_0, \hat{y}_1, ...)$
 - Single sample
 - Not optimal

Sequential sampling

- For n iterations
 - Sample sequentially $\hat{y}_t \sim P(y_t | x, \hat{y}_0, \hat{y}_1, ...)$
- Unbiased sampling
 - Not sample efficient

 $P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot$ $P(y_1 | x, y_0) \cdot$ $P(y_2 | x, y_0, y_1) \cdot$...

Beam search

- Biased sampling
 - High likelihood samples
- Generally works best

- Keep top k samples S
 - Largest $P(y_0)$
- For t steps
 - For each $\hat{y}_0, \hat{y}_1, \ldots \in S$
 - Compute $P(x, \hat{y}_0, \hat{y}_1, ..., y_t)$
 - Keep top k samples S