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Recurrent models
• Advantages


• Variable input length


• Variable output length


• Structured output


• Disadvantage


• Hard to train


• Cannot learn dependencies 
longer than 100 steps

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence 
Modeling, Bai etal., arXiv 2018
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Temporal convolutional 
networks

• Dilated convolution


• Exponential growth in 
receptive field


• 5-10 layers, receptive 
field > 100 steps
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Sequence generation using 
convolutions

• Causal (masked) 
convolutions


• Only look into past


• Auto-regressive model


• �P(y0 |x) ⋅ P(y1 |x, y0) ⋅ P(y2 |x, y0, y1) ⋅ …
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• Conditional image generation with pixelcnn decoders, Van den Oord et al., NIPS 2016
• WaveNet: A generative model for raw audio, Van Den Oord et al., arXiv 2016



Causal convolution

• Input:  � 


• Kernel: � 


• Bias:    � 


• Output: 

X ∈ ℝT×C1

w ∈ ℝw×C1×C2

b ∈ ℝC2

Zt,b = bc +
w−1

∑
i=0

C1−1

∑
j=0

Xt+i−w,b+jwi,j

Causal conv wxh
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Causal convolution 
implementation

• Regular convolution


• Shift output
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Training with temporal 
convolutions

• Labels


• input and output/loss


• Very efficient


• fully convolutional All your base
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Inference with temporal 
convolutions

• Step by step


• Harder to implement 
efficiently
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