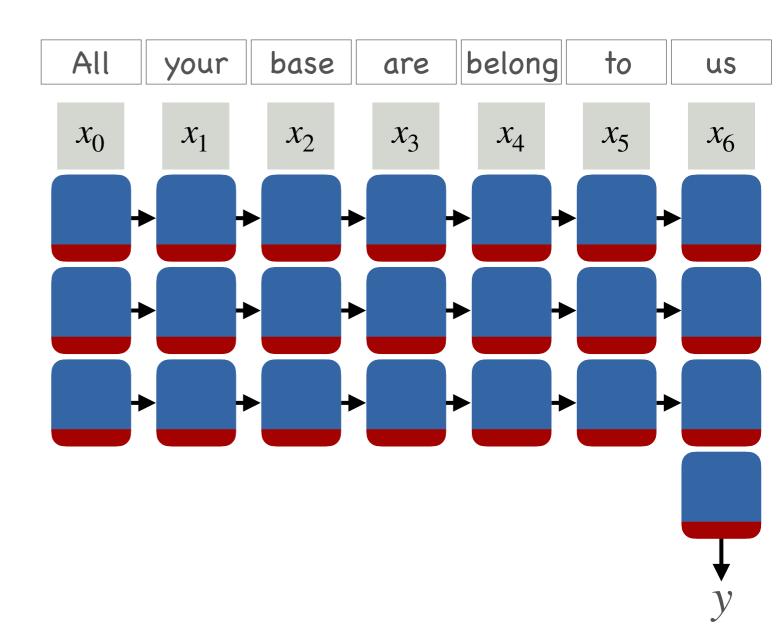
© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Recurrent models

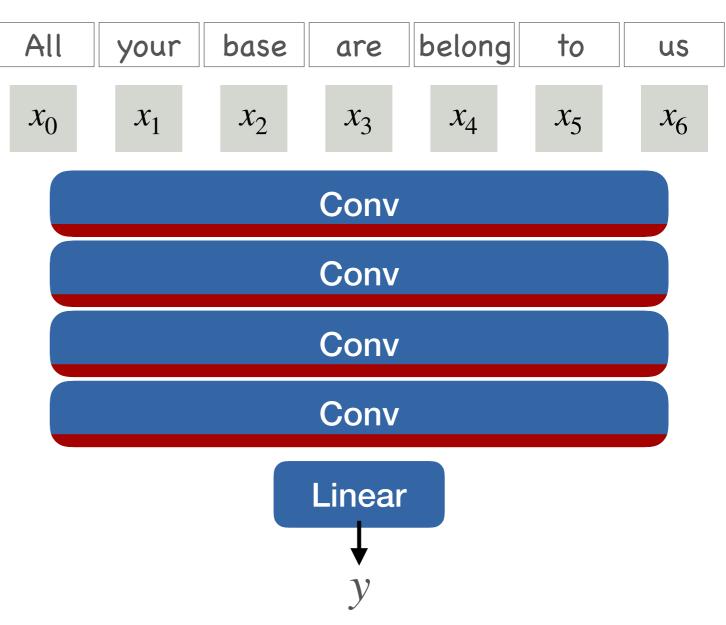
- Advantages
 - Variable input length
 - Variable output length
 - Structured output
- Disadvantage
 - Hard to train
 - Cannot learn dependencies longer than 100 steps





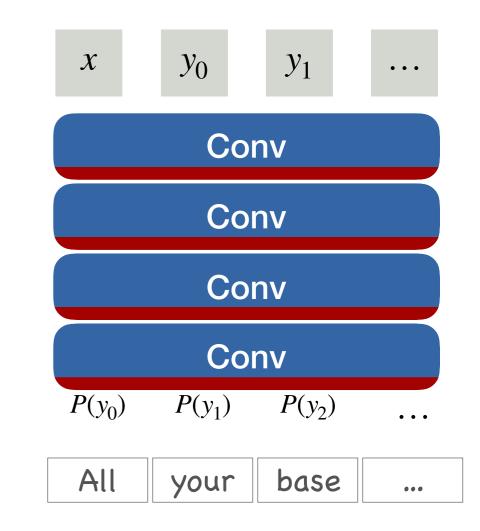
Temporal convolutional networks

- Dilated convolution
 - Exponential growth in receptive field
 - 5-10 layers, receptive field > 100 steps



Sequence generation using convolutions

- Causal (masked) convolutions
 - Only look into past
- Auto-regressive model
 - $P(y_0 | x) \cdot P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot \dots$
- Conditional image generation with pixelcnn decoders, Van den Oord et al., NIPS 2016
- WaveNet: A generative model for raw audio, Van Den Oord et al., *arXiv* 2016



Causal convolution

Causal conv wxh

 x_2

 x_3

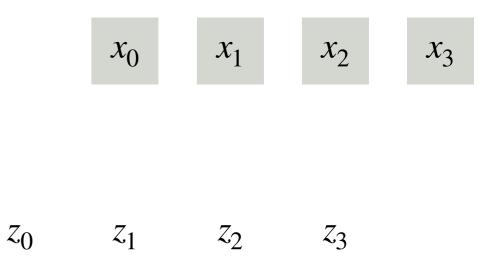
 x_1

 x_0

- Input: $\mathbf{X} \in \mathbb{R}^{T \times C_1}$
- Kernel: $\mathbf{w} \in \mathbb{R}^{w \times C_1 \times C_2}$
- Bias: $\mathbf{b} \in \mathbb{R}^{C_2}$
- Output: $\mathbf{Z}_{t,b} = \mathbf{b}_c + \sum_{i=0}^{w-1} \sum_{j=0}^{C_1-1} \mathbf{X}_{t+i-w,b+j} \mathbf{w}_{i,j}$ $z_0 = z_1 = z_2 = z_3$

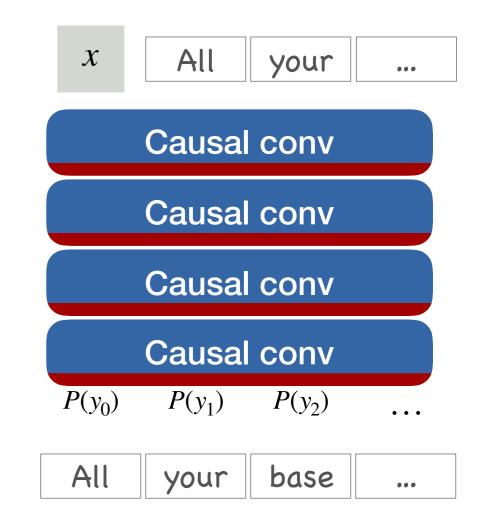
Causal convolution implementation

- Regular convolution
 - Shift output



Training with temporal convolutions

- Labels
 - input and output/loss
- Very efficient
 - fully convolutional



Inference with temporal convolutions

- Step by step
 - Harder to implement efficiently

