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Input gate
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* Allows state update




State update
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e Output gate 0
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LSTMS

e Can learn to keep state
for up to 100 time steps

* Fewer vanishing
gradients

e Short cut




Gated Recurrent Units

e Simpler LSTM
e Single state

* Fewer gates

e Similar performance 1, _,



LSTM/GRU Networks




LSTM / GRU applications
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Image source: Demo by Alex Graves
e Natural [anguage http://www.cs.toronto.edu/~graves/

processing hi how are you?

o Image genera’rion salut comment ca va?

Image source: Gregor et al,, https:/
arxiv.org/pdf/ 1 502.0462 3.pdf
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