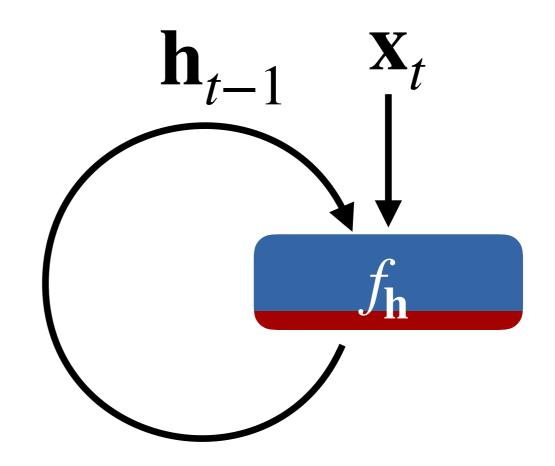
Training recurrent networks

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

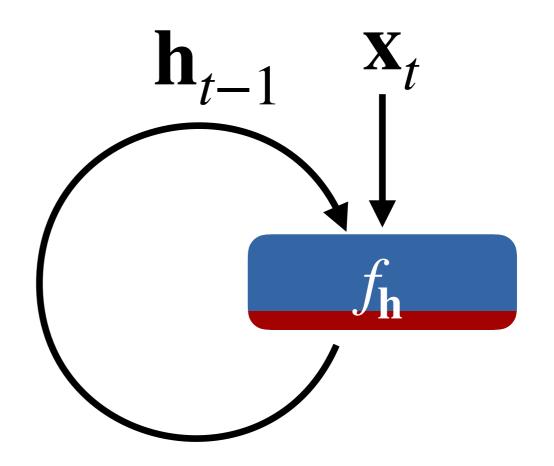
Recurrent Networks

- Processes a sequence
- Feedback connections

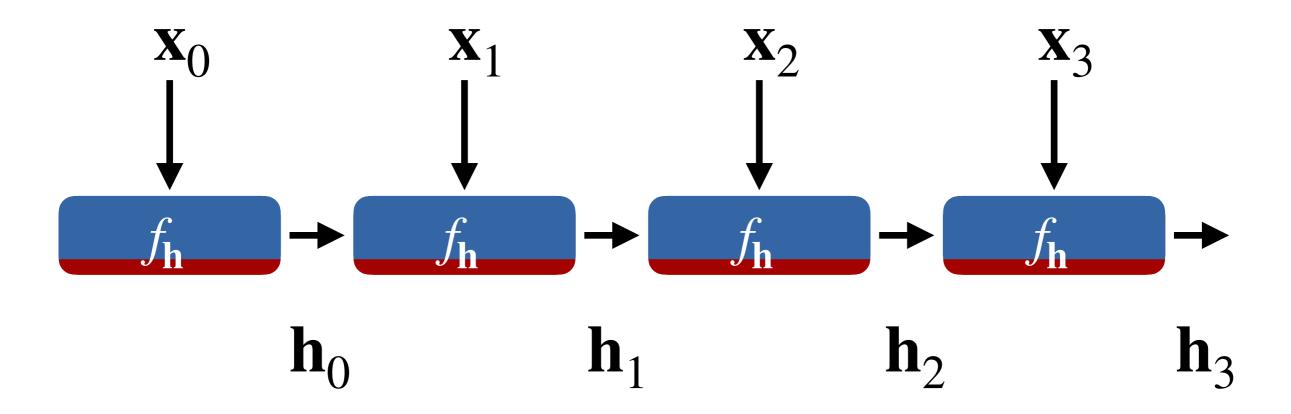


How do we train RNNs?

- No longer a simple forward and backward pass
 - Cycles

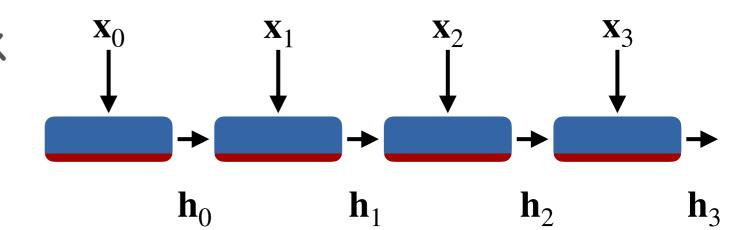


Solution: unrolling through time



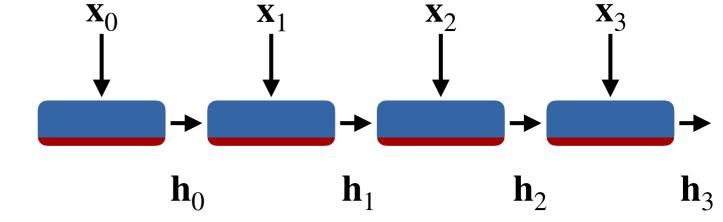
Unrolling through time

- Unrolled RNN (T steps)
 - Feed forward network
 - Shared parameters



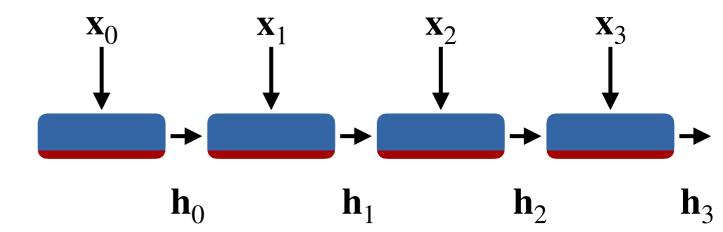
Unrolling through time - Issues

- Long unrolling
 - Computationally expensive
 - Vanishing or exploding gradients



Computation

- Solution (hack)
 - Cut RNN after n steps
 - Set h=0



Vanishing and exploding gradients - Simple example

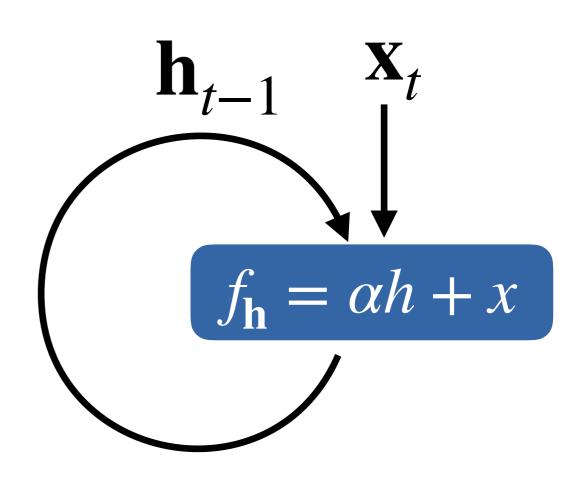
Linear RNN

•
$$\mathbf{h}_t = \alpha \mathbf{h}_{t-1} + \mathbf{x}_t$$

• For large t

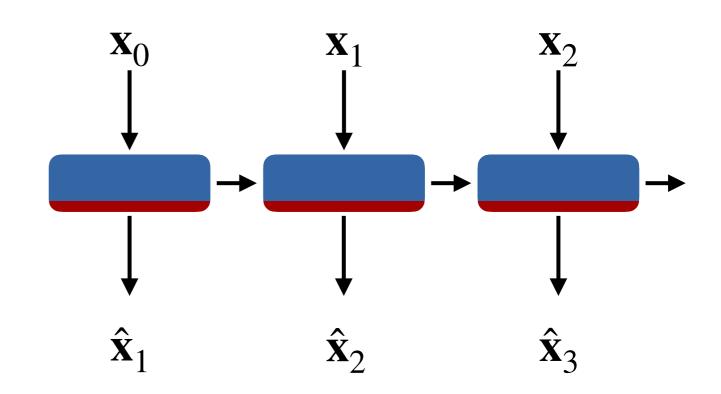
•
$$a > 1$$
 $\frac{\partial}{\partial \mathbf{x}_0} \mathbf{h}_t = \alpha^t \to \infty$

•
$$a < 1$$
 $\frac{\partial}{\partial \mathbf{x}_0} \mathbf{h}_t = \alpha^t \to 0$



Preventing vanishing and exploding gradients

- Generative models
 - Use ground truth inputs



Preventing vanishing and exploding gradients

- Exploding gradients
 - Gradient clipping

$$\nabla \ell' = \nabla \ell \min \left(1, \frac{\epsilon}{|\nabla \ell|} \right)$$

- Vanishing gradients
 - Different RNN structure