### REINFORCE

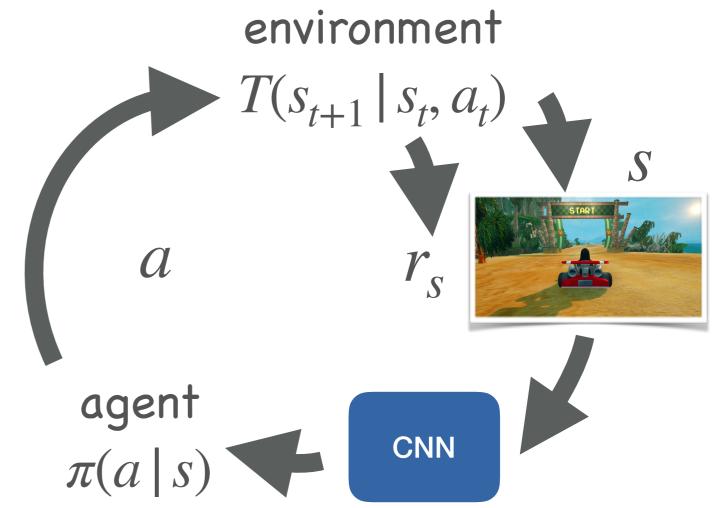
© 2019 Philipp Krähenbühl and Chao-Yuan Wu

## Non-differentiability

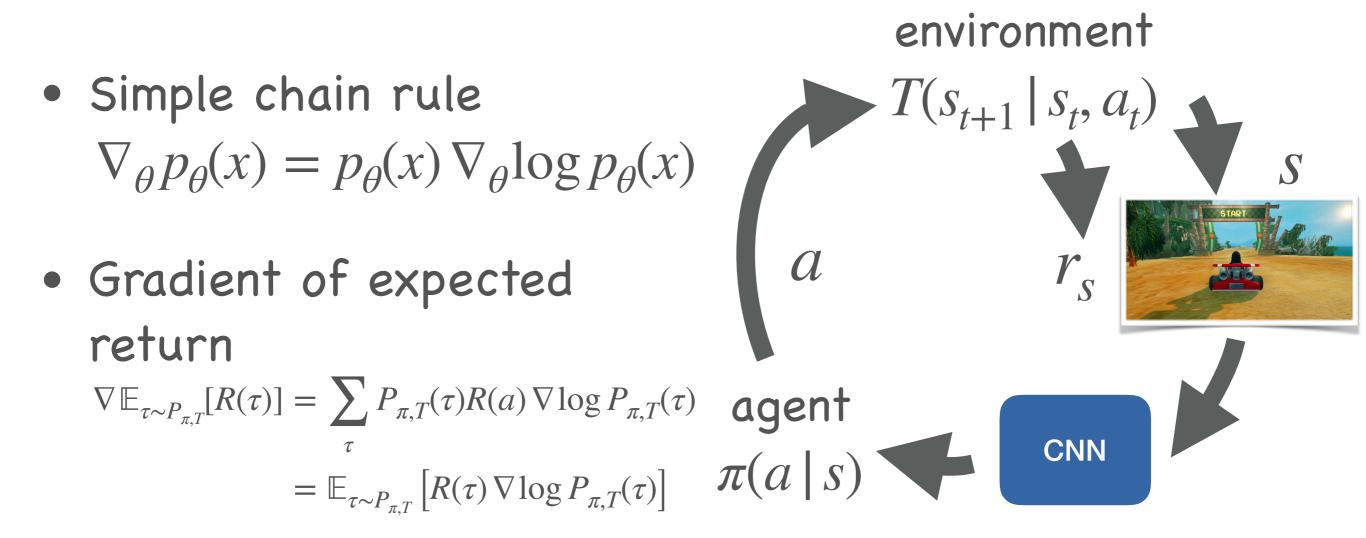
• Compute gradient of  $\mathbb{E}_{\tau \sim P_{\pi,T}}[R(\tau)]$ 

$$= \sum P_{\pi,T}(\tau) R(\tau)$$

 $\mathcal{T}$ 



# The log-derivative trick



### REINFORCE

• Compute gradient using Monte Carlo sampling  $\mathbb{E}_{\tau \sim P_{\pi,T}} \left[ R(\tau) \nabla \log P_{\pi,T}(\tau) \right]$  $\approx \frac{1}{N} \sum_{\tau \sim P_{\pi,T}} \left[ R(\tau) \nabla \log P_{\pi,T}(\tau) \right]$ 



Simple statistical gradient-following algorithms for connectionist reinforcement learning, Williams, Machine learning 1992

### REINFORCE issues

- Needs lots of samples for a good gradient
  - High-variance gradient estimator
  - Cannot reuse rollouts
    (τ)

$$\frac{1}{N} \sum_{\tau \sim P_{\pi,T}} \left[ R(\tau) \nabla \log P_{\pi,T}(\tau) \right]$$

