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Deep learning for action

• Why not just learn a 
policy that maximizes 
reward?


• Hard to optimize!
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Deep learning for action

• Two sources of non-
differentiability


• Sampling


• Environment
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Differentiating sampling

• Compute gradient of 
� 


•
�
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Differentiating sampling - 
Issues

• Large sum over all 
samples / action


• Generally intractable
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Reparametrization trick
• For continuous distributions


• Rewrite 

� 


• e.g. standard normal


• �

Pθ(a) =
1
σθ

P ( a − μθ

σθ )

𝔼a∼Pθ
[gθ(a)] = ∫Ω̃

P (b) gθ(bσθ + μθ)db

Auto-Encoding Variational Bayes, Kingma and Welling, ICLR 2014



Reparametrization trick

• Compute gradient  
 
� 


• Gradient computation by 
sampling
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Reparametrization trick - 
discrete variables

• � 


• No change of variables


• No differentiable function that 
maps to discrete distribution


• Continuous relaxation of one-hot 
vectors


• Gumbel softmax

𝔼a∼Pθ
[gθ(a)] = ∑

a

Pθ(a)gθ(a)

• The Concrete Distribution: a Continuous Relaxation of Discrete Random Variables, 
Maddison et al., ICLR 2017

• Categorical Reparameterization with Gumbel-Softmax, Jang et al, ICLR 2017
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Differentiating the 
environment

• Quite hard


• Up next
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