© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Deep learning for action

- Input
 - Observation
- Output
 - Action

- Action changes that state the of the world
 - Non-differentiable
 - Often non-repeatable
 - Long-range dependencies

state / observation

action
left
right
up
jump
down
shoot

Deep Network

How to train the agent?

- What should the agent learn to do?
 - Minimize loss
 - Reward from environment

Markov decision process (MDP) - Formal definition

• state

$$s \in S$$

action

$$a \in A$$

reward

$$r_s \in \mathbb{R}$$

• transition $T(s_{t+1} | s_t, a_t)$

• policy $\pi(a|s)$

MDP - objective

Trajectory

$$\tau = \{s_0, a_0, s_1, a_1, \dots\}$$

Return

$$R(\tau) = \sum_{t} \gamma^{t} r_{s_{t}}$$

- Objective
 - maximize_{π} $\mathbb{E}_{\tau \sim P_{\pi,T}}[R(\tau)]$

Partially observed Markov decision process (POMDP)

• state

$$s \in S$$

action

$$a \in A$$

• reward

$$r_s \in \mathbb{R}$$

• transition

$$T(s_{t+1} \mid s_t, a_t)$$

observation

$$o \in O$$

observation function

$$O(o \mid s)$$

policy

$$\pi(a \mid o)$$

Examples - Cart-pole

- MDP
- objective: balance a pole on movable cart
- state: angle, angular velocity, position, velocity
- action: force applied
- reward: 1 for each time step pole is upright

Image source: https://commons.wikimedia.org/wiki/
File:Balancer with wine 3.JPG

Examples - Robot locomotation

- MDP
- objective: make the robot move
- state: joint angle and position
- action: torques applied to joints
- reward: 1 for each time upright
 + moving

Video source: https://commons.wikimedia.org/wiki/File:Passive_dynamic_walker.gif

Examples - Games

- POMDP
- objective: beat the game
- **state**: position, location, state of all objects, agents and world
- action: game controls
- reward: score increase/ decrease, complete level, die

Video source: SuperTuxKart 1.0 Official Trailer, https://www.youtube.com/watch?v=LmTFDBillg

Examples - GO

- MDP
- objective: win the game
- state: position of pieces
- action: next piece
- reward: 0 lose, 1 win

Image source: https://en.wikipedia.org/wiki/Go_(game)#/media/File:FloorGoban.JPG

Examples - supervised learning

- MDP
- objective: Minimize the training (or validation) loss
- state: weights and hyperparameters
- action: gradient update

Everything is a (PO)MDP

- Very general concept
 - NP-hard
- Specialized algorithms still work well

