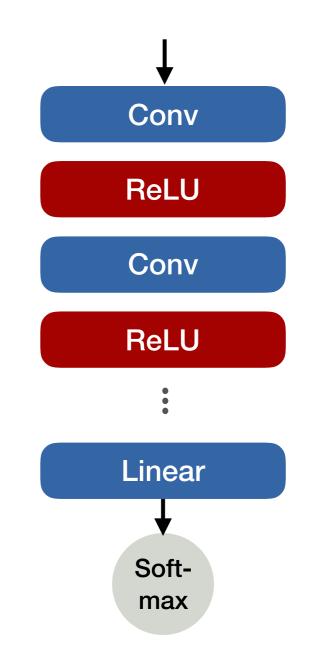
Open Problem: Understanding generalization

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Generalization in deep learning

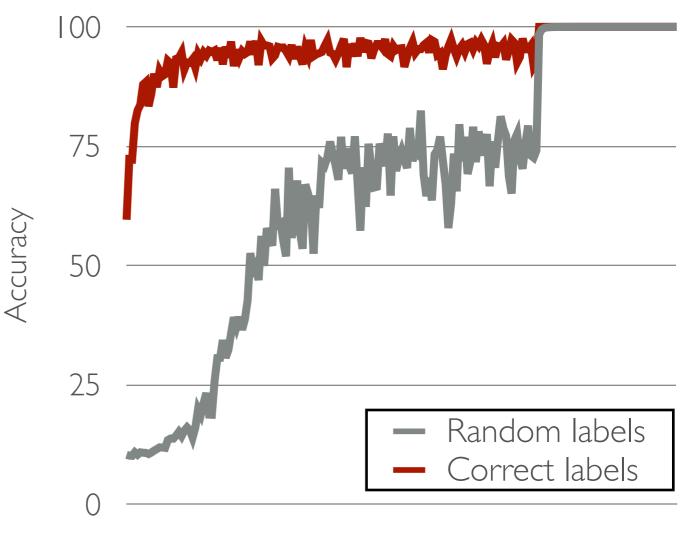
- Standard wisdom
 - Bigger/wider models overfit more



Deep networks are big enough to remember all training data

Deep networks easily fit random labels

- Memorize all data
- Works even for random noise inputs



wide resnet on cifar-10

Epochs

Understanding deep learning requires rethinking generalization, Zhang etal. 2017

Why does SGD still work?

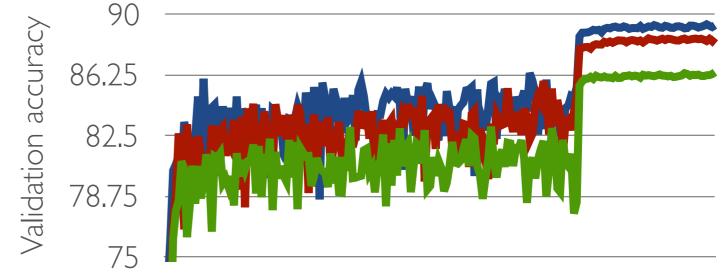
- SGD gradually minimizes objective
- Prefers solutions close to initialization
- Implicitly regularizes
- Random labels take SGD on a longer path

Exploring generalization in Deep Learning, Neyshabur etal. 2017

Larger networks overfit less

wide resnet on cifar-10

- Without data augmentation
 100
 93.75
 87.5
 81.25
 100% training accuracy
 75
 - Larger models generalize better
 - Hence overfit less



Epochs

Understanding deep learning requires rethinking generalization, Zhang etal. 2017

Larger networks overfit less

wide resnet on cifar-10

width 16 **Fraining loss** 0.75 width 32 width 48 0.5 0.25 /alidation loss 0.75 0.5 0.25 Epochs

On Calibration of Modern Neural Networks, Guo etal. 2017

 All models overfit massively on loss (log likelihood)

Larger networks overfit less

- Do we need a new learning theory?
- Do we need new intuitions?

In summary

- Models can overfit, but do not with SGD and data augmentation
 - Implicit regularization
 - How to do make it explicit?
 - Overfitting is dependent on learning algorithms (e.g. Adam overfits more)
- How can we measure overfitting?