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Generalization in deep 
learning

• Standard wisdom


• Bigger/wider models 
overfit more
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Deep networks are big enough 
to remember all training data

• Deep networks easily fit 
random labels


• Memorize all data


• Works even for 
random noise inputs

Understanding deep learning requires rethinking generalization, Zhang etal. 2017
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Why does SGD still work?

• SGD gradually minimizes 
objective


• Prefers solutions close 
to initialization


• Implicitly regularizes


• Random labels take SGD 
on a longer path

Exploring generalization in Deep Learning, Neyshabur etal. 2017



Larger networks overfit less

• Without data 
augmentation


• 100% training accuracy


• Larger models 
generalize better


• Hence overfit less

Understanding deep learning requires rethinking generalization, Zhang etal. 2017
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Larger networks overfit less

• All models overfit 
massively on loss (log 
likelihood)

On Calibration of Modern Neural Networks, Guo etal. 2017
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Larger networks overfit less

• Do we need a new 
learning theory?


• Do we need new 
intuitions?



In summary
• Models can overfit, but do not with 

SGD and data augmentation


• Implicit regularization


• How to do make it explicit?


• Overfitting is dependent on learning 
algorithms (e.g. Adam overfits more)


• How can we measure overfitting?


