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Generalization in deep
learning

e Standard wisdom

e Bigger/wider models
overfit more

Soft-
max



Deep networks are big enough
to remember all training data
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Understanding deep learning requires rethinking generalization, Zhang etal. 2017/



Why does SGD still work?

SGD gradually minimizes
objective

Prefers solutions close
to initialization

Implicitly regularizes

Random labels take SGD
on a longer path

Exploring generalization in Deep Learning, Neyshabur etal. 2017



Larger networks overft less

wide resnet on cifar-10
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Understanding deep learning requires rethinking generalization, Zhang etal. 2017/



Larger networks overft less

wide resnet on cifar-10
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e All models overhft

massively on loss (log
likelihood)

Validation loss
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On Calibration of Modern Neural Networks, Guo etal. 2017/



Larger networks overft less

e Do we need a new
learning theory?

e Do we need new
iIntuitions?



In summary

* Models can overfitf, but do not with
SGD and data augmentation

e Implicit regularization
e How to do make it explicit?

e Overfitting is dependent on learning
algorithms (e.g. Adam overfits more)

e How can we measure overfitting?



