Optimization algorithms

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Stochastic Gradient Descent with Momentum

- Default optimizer
 - Works well in most cases
 - Tune learning rate

for n epochs for B_i batches $\mathbf{g} := \mathbb{E}_{\mathbf{x}, y \in B_i} \left[\frac{\partial \mathcal{E}(\mathbf{x}, y \mid \theta)}{\partial \theta} \right]$ $\mathbf{v} := \rho \mathbf{v} + \mathbf{g}$ $\theta := \theta - \epsilon \mathbf{v}$

RMSProp

m := v := 0

- Very specialized
 - Auto-tunes learning rate
 - Momentum optional
 - Doesn't play nice with momentum
 - Works well on some reinforcement learning problems

for n epochs for B_i batches $\mathbf{g} := \mathbb{E}_{\mathbf{x}, y \in B_i} \left[\frac{\partial \mathcal{E}(\mathbf{x}, y \mid \theta)}{\partial \theta} \right]$ $\mathbf{m} := \alpha \mathbf{m} + (1 - \alpha) \mathbf{g}^2$ $\mathbf{v} := \rho \mathbf{v} + \frac{\mathbf{g}}{\sqrt{\mathbf{m} + \varepsilon}}$ $\theta = \theta - \epsilon \mathbf{v}$

Tijmen Tieleman and Geoffrey Hinton. "Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude." Neural networks for machine learning 4.2, 2012

ADAM

- Less learning rate tuning
 - Works well on small networks and problems
 - Trains well, generalizes worse
 - Mathematically not correct

Kingma, D. P., & Ba, J. L. Adam: a Method for Stochastic Optimization. ICLR 2015

v := m := 0for n epochs for B_i batches $\mathbf{g} := \mathbb{E}_{\mathbf{x}, y \in B_i} \left[\frac{\partial \ell(\mathbf{x}, y \mid \theta)}{\partial \theta} \right]$ $\mathbf{v} := \beta_1 \mathbf{v} + (1 - \beta_1) \mathbf{g}$ $\mathbf{m} := \beta_2 \mathbf{m} + (1 - \beta_2) \mathbf{g}^2$ $s := \epsilon \frac{\sqrt{1 - \beta_2^{\text{step}}}}{1 - \beta_1^{\text{step}}}$ $\theta := \theta - s \frac{\mathbf{v}}{\sqrt{\mathbf{m}} + \varepsilon}$

What optimizer to use?

- Large models and data
 - SGD with momentum
- Small models and data
 - ADAM