Instance normalization

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Instance normalization

Batch norm per input

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Instance normalization: The missing ingredient for fast stylization." arXiv 2016.

Instance normalization

• Normalize by spatial mean μ_{kc} and standard deviation σ_{kc}

$$\mathbf{Z} \in \mathbb{R}^{B \times W \times H \times C}$$

$$\downarrow$$

$$\mathbf{Z}_{k,x,y,c} - \mu_{kc}$$

$$\sigma_{kc}$$

$$\mu_{kc} = \frac{1}{WH} \sum_{x,y} \mathbf{Z}_{k,x,y,c}$$

$$\sigma_{kc}^2 = \frac{1}{WH} \sum_{x,y} (\mathbf{Z}_{k,x,y,c} - \mu_{kc})^2$$

What does instance normalization do?

B

Comparison to batch norm

- No summing over batches
- Works well for graphics applications
- Not used much in recognition
 - Unstable statistics

