Learning a Discriminative Model for the Perception of Realism
in Composite Images

Jun-Yan Zhu Philipp Krahenlahl Eli Shechtman Alexei A. Efros
UC Berkeley UC Berkeley Adobe Research UC Berkeley
Abstract

What makes an image appear realistic? In this work, we
are looking at this question from a data-driven perspective,
by learning the perception of visual realism directly from
large amounts of unlabeled data. In particular, we train
a Convolutional Neural Network (CNN) model that distin- ==
guishes natural photographs from automatically generated
composite images. The model learns to predict visual real-
ism of a scene in terms of color, lighting and texture compat-
ibility, without any human annotations pertaining to it. Our
model outperforms previous works that rely on hand-crafted
heuristics for the task of classifying realistic vs. unrealistic
photos. Furthermore, we apply our learned model to com-
pute optimal parameters of a compositing method, to maxi-
mize the visual realism score predicted by our CNN model.
We demonstrate its advantage against existing methods via
a human perception study. Figure 1: We train a discriminative model to distinguish

natural images (top left) and automatically generated im-

age composites (bottom right). The red boundary illustrates
1. Introduction the decision boundary between two. Our model is able to
predict thedegreeof perceived visual realism of a photo,
whether it's an actual natural photo, or a synthesized com-
posite. For example, the composites close to the boundary
appear more realistic.

" Composite Image

Natural Images ...

The human ability to very quickly decide whether a
given image is “realistic”j.e. a likely sample from our vi-
sual world, is very impressive. Indeed, this is what makes
good computer graphics and photographic editing so dif -
cult. So many things must be “just right” for a human to
perceive an image as realistic, while a single thing going  In this paper, we are taking a small step in the direction
wrong will likely hurtle the image down into the Uncanny of characterizing the space of natural images. We restrict
Valley [19]. the problem setting by choosing to ignore the issues of im-

Computers, on the other hand, nd distinguishing be- age layout, scene geometry, and semantics and focus purely
tween “realistic” and “arti cial” images incredibly hard. on appearance. For this, we use a large dataset of auto-
Much heated online discussion was generated by recent rematically generated image composites, which are created
sults suggesting that image classi ers based on Convolu-by swapping similarly-shaped object segments of the same
tional Neural Network (CNN) are easily fooled by random object category between two natural imageq[ This way,
noise imagesI9,29]. Butin truth, no existing method (deep the semantics and scene layout of the resulting composites
or not) has been shown to reliably tell whether a given im- are kept constant, only the object appearance changes. Our
age resides on the manifold of natural images. This is be-goal is to predict whether a given image composite will be
cause the spectrum of unrealistic images is much larger tharperceived as realistic by a human observer. While this is
the spectrum of natural ones. Indeed, if this was not the admittedly a limited domain, we believe the problem still
case, photo-realistic computer graphics would have beenreveals the complexity and richness of our vast visual space,
solved long ago. and therefore can give us insights about the structure of the



manifold of natural images. formation). Our approach is also discriminative, however,
Our insight is to train a high-capacity discriminative we generate the negative examples in a non-task-speci c
model (a Convolutional Neural Network) to distinguish nat- way and without recording the parameters of the process.
ural images (assumed to be realistic) from automatically- Our intuition is that using large amounts of data leads to
generated image composites (assumed to be unrealisticlan emergent ability of the method to evaluate photo realism
Clearly, the latter assumption is not quite valid, as a small from the data itself
number of “lucky” composites will, in fact, appear as real- In this work we demonstrate our method on the task of
istic as natural images. But this setup allows us to train on aassessing realism of image composites. Traditional image
very large visual dataset without the need of costly human compositing methods try to improve realism by suppress-
labels. One would reasonably worry that a classi er trained ing artifacts that are specic to the compositing process.
in this fashion might simply learn to distinguish natural im- These include transition of colors from the foreground to
ages from composites, regardless of their perceived realismthe backgroundi], 20], color inconsistencies. |, 23,24,33),
But, interestingly, we have found that our model appears totexture inconsistencies/[11], and suppressing “bleed-
be picking up on cues about visual realism, as demonstratedng” artifacts [31]. Some work best when the foreground
by its ability to rank image composites by their perceived mask aligns tightly with the contours of the foreground ob-
realism, as measured by human subjects. For example, Figject [15, 23, 24, 33], while others need the foreground mask
ure 1 shows two composites which our model placed close to be rather loose and the two backgrounds not too cluttered
to the decision boundary — these turn out to be compositesor too dissimilar {, 8, 16,20, 31]. These methods show im-
which most of our human subjects thought were natural im- pressive visual results and some are used in popular image
ages. On the other hand, the composite far from the bound-editing software like Adobe Photoshop, however they are
ary is clearly seen by most as unrealistic. Given a large based on hand-crafted heuristics and, more importantly, do
corpus of natural and composite training images, we shownot directly try to improve (or measure) the realism of their
that our trained model is able to predict the degree of re-results. A recent work(] explored the perceptual realism
alism of a new image. We observe that our model mainly of outdoor composites but focused only on lighting direc-
characterizes the visual realism in terms of color, lighting tion inconsistencies.
and texture compatibility. The work most related to ours, and a departure point for
We also demonstrate that our learned model can be useaur approach, is Lalonde and Efros5 who study color
as a tool for creating better image composites automati-compatibility in image composites. They too generate a
cally via simple color adjustment. Given a low-dimensional dataset of image composites and attempt to rank them on
color mapping function, we directly optimize the visual re- the basis of visual realism. However, they use simple, hand-
alism score predicted by our CNN model. We show that this crafted color-histogram based features and do not do any
outperforms previous color adjustment methods on a large-learning.
scale human subjects study. We also demonstrate how our Our method is also super cially related to work on dig-
model can be used to choose an object from a category thaital image forensics1[2, 21] that try to detect digital image

best ts a given background at a speci c location. manipulation operations such as image warping, cloning,
and compositing, which are not perceptible to the human
2. Related Work observer. But, in fact, the goals of our work are entirely dif-

ferent: rather than detecting which of the realistic-looking
images are fake, we want to predict which of the fake im-
ages will look realistic.

Our work attempts to characterize properties of images
that look realistic. This is closely related to the extensive
literature on natural image statistics. Much of that work
is based on generative modeis {2, 35. Leaming a gen- 3 | earning the Perception of Realism
erative model for full images is challenging due to their
high dimensionality, so these works focus on modelinglocal Our goal is developing a model that could predict
properties via Iter responses and small patch-based repre-whether or not a given image will be judged to be realistic
sentations. These models work well for low-level imaging by a human observer. However, training such a model di-
tasks such as denoising and deblurring, but they are inaderectly would require a prohibitive amount of human-labeled
quate for capturing higher level visual information required data, since the negative (unrealistic) class is so vast. In-
for assessing photo realism. stead, our idea is to train a model for a different “pretext”

Other methods take a discriminative approagh [, 25, task, which is: 1) similar to the original task, but 2) can

,33]. These methods can generally attain better resultsbe trained with large amounts of unsupervised (free) data.
than generative ones by carefully simulating examples la- The “pretext” task we propose is to discriminate between
beled with the parameters of the data generation processatural images and computer-generated image composites.
(e.g. joint velocity, blur kernel, noise level, color trans- A high-capacity convolutional neural network (CNN) clas-
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Figure 2: Example composite images for CNN training: (a) _. ] o b lacing th

image composites generated by fully supervised foregroundFlgure 3[) We geEerarl]te a compoljléi |mag<;>/ yrep Iacmgdt €

and background masks, (b) image composites generated p{prget object (c) by the source obj (2). We rescaie an

a hybrid ground truth mask and object proposal, (c) image ranslate the source object to match the location and scale

composites generated by a fully unsupervised proposal sys—Of the targeF c_)bject (c). We genergte the nal composite

tem. See text for details. Best viewed in color. (€) by combining the segmented object (b) and the masked
background (d).

si er is trained using only automatically-generated “free” ("~ A
labels (i.e. natural vs. generated). While this “pretext” task
is different from the original task we wanted to solve (re- | |]
alistic vs. unrealistic), our experiments demonstrate that it |(@ Target Obje
performs surprisingly well on our manually-annotated test
set (c.f. Sectiorb).

We use the network architecture of the recent VGG |() object Masy
model €], a 16-layer model with smaB 3 convolution
Iters. We initialize the weights on the ImageNet classi ca- Figure 4. Given an original photo with target object (a)

R
(b) Composite Images

sSaaam

(d) Object Masks with Similar Shapes
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tion challenge §] and then ne-tune on our binary classi-  and its object mask (c), we search for source objects whose
cation task. We optimize the model using back-propagationobject mask matches well the shape of target object, and
with Stochastic Gradient Descent (SGD) using Caffd.[ replace the target object with them. We show the nearest

neighbor object masks in (d) and their corresponding gen-

3.1. Automatically Generating Composites erated composites (b).

To generate training data for the CNN model, we use the
LabelMe image datasef{] because it contains many cat- (64 64) object masks. Take Figurg for example. We re-
egories along with detailed annotation for object segmen-place the original building with other buildings with similar
tation. For each natural image in the LabelMe dataset, weoutlines. The purpose of the rough matching of object shape
generate a few composite images as follows. is to make sure that the generated composites are already
Generate a Single Composite Figure 3 illustrates the close to the manifold of natural images. However, this pro-
process of generating a single composite image, which fol-cedure requires detailed segmentation annotations for both
lows [15]. Starting with a background imad® (Figure3c) source and target objects. We call this procedtubySu-
that contains an object of interest (target object), we locate apervisedas it requires full annotation of object masks.
source objecF (Figure3a) with a similar shape elsewhere  An alternative way is to use automatic image segmenta-
in the dataset, and then rescale and translate the source olkion produced by an “object proposal” method (in our im-
jectF so that the source object matches the target location.plementation we used Geodesic Object ProposaR.[In
(Figure 3b). We assume the object is well segmented andthis case, training images are still generated using human
the alpha map of the source object is known (Figugel). labeled segmentation for the target objects, but source ob-
We apply a simple feathering based on a distance transformjects are obtained by searching for object proposal segments
map to the object mask of the source object. We gener- with similar shapes to the target objects in all images. This
ate the nal composite by combining the source object and requires much fewer segmented training images. We name
background = F+(1 ) B. this procedurePartiallySupervised The third way is fully
Generate Composite Dataset For each target object in  automatic: we use object proposals for both source and tar-
each image, we search for source objects with similar get objects. In particular, we randomly sample an object
shapes by computing the SSD of blurred and subsampledcoroposal for a given image, and replace it by other object



ites by their realism score prediction. The top row shows
high-quality composites that are dif cult for humans to spot
while the bottom row shows poor composites due to incor-
rect segmentation and color inconsistency. We demonstrate
(a) Most realistic composites ranked by our model that our model matches to human perception with quantita-

! F tive experiments in Sectioh
— - 8 Letf (I; ) be ourtrained CNN classi er model predict-

(b) Least realistic composites ranked by our model ing the visual realism of an imade We can use this classi-
er to guide an image compositing method to produce more
realistic outputs. This optimization not only improves ob-
ject composition, but also reveals many of the properties of
our learned realism model.

We formulate the object composition processl gs=

ag(F)+(1 ) B whereF is the source objecB is the
background scene, and2 [0; 1] is the alpha mask for the
I- foreground object. For this task, we assume that the fore-
ground object is well segmented and placed at a reasonable
location. The color adjustment modg( ) adjusts the vi-
sual properties of the foreground to be compatible with the
background image. Color plays an important role in the ob-
ject composition process f]. Even if an object ts well to
the scene, the inconsistent lighting will destroy the illusion
of realism.

The goal of a color adjustment is to optimize the adjust-
ment modep( ), such that the resulting composite appears
realistic. We express this in the following objective func-

4. Improving Image Composites

Figure 5: Ranking of generated composites in terms of re-
alism scores. Best viewed in color.

proposals with the most similar shapes from the dataset.
This procedure is fully unsupervised and we callJin-
supervised Later, we show that this fully automatic pro-
cedure only performs slightly worse th&ullySupervised
w.r.t human annotations, in terms of predicting visual rea
ism (Sectiorg). We also experimented with randomly cut-
ting and pasting objects from one image to the other with-
out matching object masks. In this case, the CNN model
we trained mainly picked up artifacts of high-frequency
edges that appear in image composites and performed si
ni cantly worse. In our experiments, we used 11;000
natural images containing 25; 000 object instances from
the largestl5 categories of objects in the LabelMe dataset.
For FullySupervisedndPartiallySupervisegwe generated
a composite image for each annotated object in the image
For Unsupervisedwe randomly sample a few object pro-
posals as target objects, and generate a composite image for E(@:F)= T(g )+ W Ereg(9); @)
each of them. wheref measures the visual realism of the composite and
Figure 2 shows some examples of image composites Eeg imposes a regularizer on the space of possible ad-
generated by all three methods. Notice that some composjustments. A desired image composite should be realistic
ite images are artifact-free and appear quite realistic, whichwhile staying true to identity of the original object (e.g. do
forces the CNN model to pick up not only the artifacts of the not turn a white horse to be yellow). The weighitcon-
segmentation and blending algorithms, but also the compat-rols the relative importance between the two terms (we
ibility between the visual content of the inserted object and set it tow = 50 in all our experiments). We apply a

its surrounding scene. Different from previous woftk] very simple brightness and contrast model to the source
we do not manually remove any structurally inconsistent objectF for each channel independently. For each pixel
images. We nd that composites generatedrullySuper- we map the foreground color valué® = (c;ch;ch) to

visedare usually correct with regards to semantics and ge-g(FP) = ( 10‘1’+ 1; 2(£+ 2; 3<*§+ 3). The regulariza-
ometry, but sometimes suffer from inconsistent lighting and tion term for this model can be formulated as:

color. PartiallySupervisedilso often generates meaningful 1 X

scenes, but sometimes tends to paste an object into parts Ereg (g) = N KI§  15ko+

of another object. WhildJnsupervisedends to generate X p @)
scenes with incorrect semantics, the number of scenes that k(i )P+ ( ;1) C]p ko

can be generated is not restricted by the limited amount of i
human annotation. whereN is the number of foreground pixels in the im-
Ranking of Training Images Interestingly, our trained age, andg = F+(1 ) B is the composite im-

CNN model is able to rank visually appealing image com- age without recoloringl § andl§ denotes the color values
posites higher than unrealistic photos with visual artifacts. for pixel p in the composite image. The rst term penal-

In Figure5, we use our model to rank the training compos- izes large change between the original object and recolored



object, and the second term discourages independent color Methods without object mask
channel variations (roughly hue change).

Note that the discriminative modehas been trained and \C/:glgr E::Ttt? ‘+ ]S(\rlllf)/l mask) 00'7%1
xeq d_ur_mg this optlmlzatl(_)n_.. _ PlaceCNN 4] + SVM 0.75
Optimizing Color Compatibility =~ We would like to op- AlexNet [14] + SVM 0.73
timize color adjustment functiog = argming E(g;F). RealismCNN 0.84
Our objective (Equation) is differentiable, if the color ad- RealismCNN + SVM 0.88
justment functiorg is also differentiable. This allows us to Human 0.91

optimize for color adjustment using gradient-descent.

To optimize the function, we decompose the gradient Methods using object mask

into 9F = @f(@')z; ) %bg + @g;gg . Notice that @%i; ) Reinhardet al.[27] 0.66
can be computed through backpropagation of CNN model Lalonde and Efros][7] (with mask) 0.81

from the loss layer to the image layer while the other parts
have a simple close form of gradient. See supplemental
material for the gradient derivation. We optimize the cost
function using L-BFGS-BJ]. Since the objective is non-
convex, we start from multiple random initializations and
output the solution with the minimal cost.

In Section6.1, we compare our model to existing meth- g, /51ation Dataset We use a public dataset 3.9 im-
ods, and show that our method generates perceptually betteéges introduced by Lalonde and Efross]; which com-

composites. Although our color adJustment_modeI is rela- prises of180natural photograph&59 unrealistic compos-
tively simple, our learned CNN model provides guidance jio5 and 180 realistic composites. The images were man-
towards better color compatible composite. ually labeled by three human observers with normal color
Selecting Best- tting Objects Imagine that a user would vision. All methods are evaluated on a binary realistic
like to place a car on a street scene (e.g. aslif])] vs. unrealistic classi cation task witB59 unrealistic pho-
Which car should she choose? We could choose an objectos versus360 realistic photos (which include natural im-

F =argming E(g;F). For this, we essentially generate ages plus realistic composites). Our method assigns a vi-
a composite image for each candidate car instance and sesual realism score to each photo. Area under ROC curve is

Table 1. Area under ROC curve comparing our method
against previous methods4, 23]. Note that several meth-
ods take advantage of human annotation (object mask) as
additional input while our method assumes no knowledge
of the object mask.

lect the object with minimum cost function (Equatidh used to evaluate the classi cation performance. We call our
We show our model can select more suitable objects for methodRealismCNNAIlthough trained on a different loss
composition task in Sectiof.2 function (i.e. classifying natural photos vs. automatically
generated image composites), with no human annotations
5. Implementation for visual realism, our model outperforms previous meth-

ods that build on matching low-level visual statistics includ-
ing color std/mean43], color palette, texture and color his-
togram [L5]. Notice that Lalonde and Efros.}] also re-
quires a mask for the inserted object, making the task much
easier, but less useful.

CNN Training We used the VGG mode?f] from the au-
thors' website, which is trained on ImageNeét.[ We then
ne-tune the VGG Net on our binary classi cation task (nat-
ural photos vs. composites). We optimize the CNN model
using SGD. The learning rateis initialized to0:0001and
reduced by factor 0.1 afte¥O; 000 iterations. We set the  Supervised Training Without any human annotation for
learning rate forfc 8 layer to belO times higher than the visual realism, our model already outperforms previous
lower layers. The momentum &9, the batch siz&0, and methods. But it would be more interesting to see how
the maximum number of iteratior&s; 000, our RealismCNNmodel improves with a small additional

Dataset Generation For annotated objects and object @mountof human realism labeling. For this, we use the hu-
proposals in the LabelMe datasets, we only consider ~ Man annotation (reah_stlc photos Vs. unreall_snc photos) pro-
objects whose pixels occupy betwes%  50% of im- vided by [L5], and train a Imear SVM classi erd] on top
age pixels. For human annotation, we exclude occluded ob-Of the fc 7 layer's 4096 dimensional features extracted by

jects whose object label strings contain the words “part”, ©ur RealismCNNnodel, which is a common way to adapt a
“occlude”, “regions” and “crop”. pre-trained deep model to a relatively small dataset. We calll

this RealismCNN + SVMFigure 6 shows a few compos-

ites ranked with this model. In practick; 6 andfc 7 lay-

ers give similar performance, and higher compared to lower
We rst evaluate our trained CNN model interms of clas- layers. We evaluate our SVM model using 10-fold cross-

sifying realistic photos vs. unrealistic ones.

6. Experiments
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Figure 6: Ranking of photos according to our model's visual realism prediction. The color of image border encodes the
human annotationgreen realistic compositesed unrealistic compositeslue natural photos. The different rows contain
composites corresponding to different rank percentiles of scores predicteRedtismCNN + SVM

validation. This adaptation further improves the accuracy \ RealismCNN RealismCNN + SVM
of visual realism prediction. As shown in Table Real- FullySupervised 0.84 0.88
iSmCNN + SVM(0:88) outperforms existing methods by a PartiallySupervised 0:79 0:84

large margin. We also compare our SVM model with other
SVM models trained on convolutional activation features
(fc 7 layer) extracted from different CNN models includ- Table 2: Area under ROC curve comparing different dataset
ing AlexNet [14] (0:75), PlaceCNN $4] (0:73) and original generation procedureBullySupervisedises annotated ob-
VGG Net [29] (0:76). As shown in Tablel, our Realism + jects for both source object and target objdeartiallySu-
SVMmodel reports much better results, which suggests thatPerviseduses annotated objects only for target object, but
training a discriminative model using natural photos, and Using object proposals for source objddhsupervisedises
automatically generated image composites can help learrPbject proposals for both cases.

better feature representation for predicting visual realism.

Unsupervised 0.78 0.84

in the original datasetl[5]. Humans achieve a score @P1
Human Performance Judging an image as photo- in terms of area under ROC curve, suggesting our model
realistic or not can be ambiguous even for humans. To mea-achieves performance that is close to level of human agree-
sure the human performance on this task, we collected addiment on this dataset.

tional annotations for thé19images in [L5] using Amazon Dataset Generation Procedure The CNN we reported
Mechanical Turk. We collected on averat@annotations  so far was trained on the image composites generated by
for each image by asking a simple question "Does this im- the FullySupervisegrocedure. In Tablg, we further com-

age look realistic?” and allowing the worker to choose one pare the realism prediction performance when training with
of four options: 1 (de nitely unrealistic), 2 (probably unre- other procedures described in Sectiddi. We nd that
alistic), 3 (probably realistic) and 4 (de nitely realistic). We FullySupervised RealismCNgives better results when no
then average the scores of human response and compare theiman realism labeling is available. With SVM supervised
MT workers' ratings to the “ground truth” labels provided training (using human annotations), the margin between dif-
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Py
g_i Figure 8: From left to right: object mask, cut-and-paste,
%- results generated bl NN Iter 1 andCNN Iter 2 without
the regularization terrieg .
a background image for each photo. Given an input, we
recolor the foreground object using four methods: simple
z cut-and-paste, Lalonde and Efrosy], Xue et al. B3] and
2 our color adjustment model described in SectioWe use
S theFullySupervisedersion ofRealismCNNnodel without
'g? SVM training. We follow the same evaluation setting as in
= [33] and use Amazon Mechanical Turk to collect pairwise

comparisons between pairs of results (the question we ask
is “Given two photos generated by two different methods,

i ) ) which photo looks more realistic?”). We collected in total
Figure 7: Example composite results: from left to right: 431 40painwise annotations (10 annotations for each pair of
objects mask, cut-and-paste, Lalonde and Effé§ [Xue  \athods for al719images). We use the Thurstone's Case
etal. 33 and our method. V Model [37] to obtain a realism score for each method

ferent dataset generation methods becomes smaller. Thi®€r image from the pairwise annotations, and normalize the
suggests that we can learn the feature representation usin%cores so that their standard deviation for each image is 1.

fully unsupervised data (without any masks), and improve Finally, we compute the average scores over all the pho-
it using small amounts of human rating annotations. tos. We report these average human rating scores for three

Indoor Scenes The Lalonde and Efros dataset] con- categories of images: unrealistic composites, realistic com-
tains mainly photographs of natural outdoor environments. POSites and natural photos. We use natural photos for sanity
To complement this dataset, we construct a new dataset tha¢'eCck since an ideal color adjustment algorithm should not
contains720indoor photos with man-made objects from the modify the color dlstr_lbunon ofan o_b]ect ina _natural_ photo.
LabelMe dataset. Similar td ], our new dataset contains 0 hatural photos, if no color adjustment is applied, the
180natural photos180realistic composites, ar&50unre- cut-and-paste” result does not alter the original photo.
alistic composites. To better model i.ndoor scenes, we trainResults Table 3 compares different methods in terms of
our CNN model on 21;000 natural images (both indoor  gyerage human ratings. On average, our method outper-
and outdoor) that contain 42,000 object instances from  ¢5rmg other existing color adjustment methods. Our method
more thar200categories of objects in the LabelMe dataset. gjgnj cantly improves the visual realism of unrealistic pho-
We use MTurk to collect human labels for realistic and un- o5 |nterestingly, none of the methods can notably improve
rSe\?ll\l/ISttIC lcc.)mposneRs (%3 a(r;rlljolilatlolns per ;]magg)ég)wnhout realistic composites although our model still performs best
raining, ourRealism alone achieve8:83 on ; ;
the indoor dataset, which is consistent with our results on ;[n \(/)SS;Ih fetglzgricicr)llf(())rrriosljuosljrrnggltoT(;tdr}zgtsrh;ivgg;;zr;se
the Lalonde and Efros dataset. to when, and how much, it should recolor the object. For
6.1. Optimizing Color Compatibility bot_h realistic composites and natural pho?os{ our mgthod
_ o o _ typically does not change much the color distribution since
Generating a realistic composite is a challenging prob- these images are correctly predicted as already being quite
lem. Here we show how our model can recolor the object realistic. On the other hand, the other two methods try to al-
so that it better ts the background. ways match the low-level statistics between the foreground
Dataset, Baselines and Evaluation We use the dataset object and background, regardless of how realistic the photo
from [15] that provides a foreground object, its mask, and is before recoloring. Figuré shows some example results.

Object mask Cut-n-paste [15] [33] Ours



Hard Negative Mining We observe that our color opti-
mization method performs poorly for some images once we
turn off the regularization ternkeg. (See FigureB for
examples). We think this is because some of the result-
ing colors (withoutEeq ) Never appear in any training data (a) Best- tting object selected bigealismCNN
(positive or negative). To avoid this unsatisfactory prop-
erty, we add newly generated color adjustment results as the
negative data, and retrain the CNN with newly added data,
similar to hard negative mining in object detection litera-
ture [7]. Then we use this new CNN model to recolor the
object again. We repeat this process three times, and ob-
tain three CNN models named @ Nlter 1, CNNIter 2

and CNNIter 3. We compare these three models using
the same MTurk experiment setup, and obtain the follow-
ing results:CNNIter 1: 0:162 CNNIter 2: 0:045 and
CNNIter 3: 0:117. As shown in Figures, the hard neg- (c) Random selected objects
ative mining avoids extreme coloring, and produces better
results in general. We useN N Iter 3to produce the nal
results in Table3 and Figurer.

(b) Object with most similar shape

Figure 9: For the same photo and the same location, we
produce different composites using objects selected by three
methods: (aRealismCNN(b) the object with the most sim-

6.2. Selecting Suitable Object ilar shape, and (c) a randomly selected object.

We can also use ourealismCNNmodel to select the
best- tting object from a database given a location and a

Unrealistic | Realistic | Natural
Composites] Composites| Photos

background image. In particular, we generate multiple pos- cut-and-paste  -0.024 0.263 0.287
sible candidate composites for one category (e.g. a car) and [17] 0123 20.299 0.247
use our model to select the most realistic one among them. 7 0.410 0045 0537

We randomly selec60 images from each of th&5
largest object categories in the LabelMe dataset and build
a dataset o750 background images. For each background Table 3: Comparison of methods for improving compos-
photo, we generatgs candidate composite images by nd- ites by average human ratings. We use the authors' code
ing 25source objects (from all other objects in the same cat- to produce results for Lalonde and Efrosi] and Xue et
egory) with the most similar shapes to the target object, asal [35]. We follow the same evaluation setting as ]
described in Sectio. 1 Then the task is to pick the object and obtain human ratings from pairwise comparisons using
that ts the background best. We select the foreground ob- Thurstone's Case V ModeBp].
ject using three methods: usifealismCNNas described
in Section4; select the object with the most similar shape Our model can also guide automatic color adjustment and
(denotedShapg; and randomly select the object frops object selection for image compositing.
candidates (denotdgandon). Many factors play a role in the perception of realism.

We follow the same evaluation setting described in Sec- While our learned model mainly picks up on purely vi-
tion 6.1 We collect22500 human annotations, and ob- sual cues such as color compatibility, lighting consistency,
tain the following average Human ratingRealismCNN and segment compatibility, high-level scene cues (seman-
0:285 Shape 0:033 andRandom 0:252 Figure9 tics, scene layout, perspective) are also important factors.
shows some example results for the different methods. OurOur current model is not capable of capturing these cues as
method can suggest more suitable objects for the composiwe generate composites by replacing the object with an ob-
tion task. ject from the same category and with a similar shape. Fur-

ther investigation in these high-level cues will be required.

ours 0.311 0.279 0.196

7. Conclusion :
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