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Controlled experiments indicate that explicit intermediate
representations help action.
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Biological vision systems evolved to support action in physical envi-
ronments [1, 2]. Action is also a driving inspiration for computer vision
research. Problems in computer vision are often motivated by their
relevance to robotics and their prospective utility for systems that move
and act in the physical world. In contrast, a recent stream of research
at the intersection of machine learning and robotics demonstrates that
models can be trained to map raw visual input directly to action [3–6].
These models bypass explicit computer vision entirely. They do not
incorporate modules that perform recognition, depth estimation, optical
flow, or other explicit vision tasks. The underlying assumption is that
perceptual capabilities will arise in the model as needed, as a result of
training for specific motor tasks. This is a compelling hypothesis that,
if taken at face value, appears to obsolete much computer vision re-
search. If any robotic system can be trained directly for the task at hand,
with only raw images as input and no explicit vision modules, what
is the utility of further perfecting models for semantic segmentation,
depth estimation, optical flow, and other vision tasks?

We report controlled experiments that assess whether specific vision
capabilities are useful in mobile sensorimotor systems that act in com-
plex three-dimensional environments. To conduct these experiments,
we use realistic three-dimensional simulations derived from immersive
computer games. We instrument the game engines to support controlled
execution of specific scenarios that simulate tasks such as driving a car,
traversing a trail in rough terrain, and battling opponents in a labyrinth.
We then train sensorimotor systems equipped with different vision
modules and measure their performance on these tasks.

Our baselines are end-to-end pixels-to-actions models that are
trained directly for the task at hand. These models do not rely on
any explicit computer vision modules and embody the assumption that
perceptual capabilities will arise as needed, in the course of learning
to perform the requisite sensorimotor task. To these we compare mod-
els that receive as additional input the kinds of representations that
are studied in computer vision research, such as semantic label maps,
depth maps, and optical flow. We can therefore assess whether rep-
resentations produced in computer vision are useful for sensorimotor
challenges. In effect, we ask: What if a given vision task was solved?
Would this matter for learning to act in complex three-dimensional
environments?

Our first finding is that computer vision does matter. When agents
are provided with representations studied in computer vision, they
achieve higher performance in sensorimotor tasks. The effect is signifi-
cant and is consistent across simulation platforms and tasks.

We then examine in finer granularity how useful specific computer
vision capabilities are in this context. Our second finding is that some
computer vision capabilities appear to be more impactful for mobile
sensorimotor operation than others. Specifically, depth estimation

and semantic scene segmentation provide the highest boost in task
performance among the individual capabilities we evaluate. Using all
capabilities in concert is more effective still.
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Fig. 1. Assessing the utility of intermediate representations for
sensorimotor control. (A) Sensorimotor tasks. From left to right:
urban driving, off-road trail traversal, and battle. (B) Intermediate
representations. Clockwise from top left: semantic segmentation,
intrinsic surface color (albedo), optical flow, and depth. (Albedo
not used in battle.) (C) Main results. For each task, we compare an
image-only agent with an agent that is also provided with ground-
truth intermediate representations. The agent observes the inter-
mediate representations during both training and testing. Success
rate (‘SR’) is the fraction of scenarios in which the agent success-
fully reached the target location; weighted success rate (‘WSR’) is
weighted by track length; ‘frags’ is the number of enemies killed in
a battle episode. We show mean and standard deviation in each con-
dition. (D) Supporting experiments. In the ‘Image + All (predicted)’
condition, the intermediate representations are predicted in situ by
a convolutional network; the agent is not given ground-truth repre-
sentations at test time. The results indicate that even predicted vision
modalities confer a significant advantage.
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We also conduct supporting experiments that aim to probe the role
of explicit computer vision in detail. We find that explicit computer
vision is particularly helpful in generalization, by providing abstraction
that helps the trained system sustain its performance in previously
unseen environments. Finally, we show that the findings hold even
when agents predict the intermediate representations in situ, with no
privileged information.

RESULTS

We perform experiments using two simulation environments: the open-
world urban and suburban simulation Grand Theft Auto V [7–9] and
the VizDoom platform for immersive three-dimensional battles [5, 10].
In these environments we set up three tasks: urban driving, off-road
trail traversal, and battle. The tasks are illustrated in Figure 1A.

For each task, we train agents that either act based on the raw
visual input alone or are also provided with one or more of the follow-
ing intermediate representations: semantic and instance segmentation,
monocular depth and normals, optical flow, and material properties
(albedo). The intermediate representations are illustrated in Figure 1B.
The environments, tasks, agent architectures, and further details are
specified in the supplement.

Figure 1C summarizes the main results. Intermediate representa-
tions clearly help. The supplement reports additional experiments that
examine these findings, possible causes, and alternative hypotheses.

ANALYSIS

Our main results indicate that sensorimotor agents can greatly benefit
from predicting explicit intermediate representations of scene con-
tent, as posited in computer vision research. Across three challenging
tasks, an agent that sees not just the image but also the kinds of inter-
mediate representations that are pursued in computer vision research
learns significantly better sensorimotor coordination. Even when the
intermediate representations are imperfectly predicted in situ by a
small, light-weight deep network, the improvements are significant
(Figure 1D).

The benefits of explicit vision are particularly salient when it comes
to generalization. Equipping a sensorimotor agent with explicit inter-
mediate representations of the scene leads to more general sensorimotor
policies. As reported in the supplement, in urban driving, the perfor-
mance of image-only and image+vision agents is nearly tied on the
training set. However, when we test generalization to new areas, the
image+vision agent outperforms the image-only agent on the test set
even with an order of magnitude less experience with the task during
training.

This generalization is exhibited not only by agents equipped with
ground-truth representations, but also by agents that predict the inter-
mediate representations in situ, with no privileged information at test
time. An agent that explicitly predicts intermediate representations
of the scene and uses these explicit representations for control gen-
eralizes better to previously unseen test scenarios than an end-to-end
pixels-to-actions agent.

Independently of our work, Sax et al. [16] and Mousavian et al. [17]
studied the role of intermediate representations in visuomotor policies.
These works focus on visual navigation in static indoor environments
and show that agents equipped with intermediate representations, as
studied in computer vision, train faster and generalize better. While the
details of environments, tasks, representations, and agents differ, the
findings are broadly aligned and appear to support each other.

CONCLUSION

Computer vision produces representations of scene content. Much
computer vision research is predicated on the assumption that these
intermediate representations are useful for action. Recent work at the
intersection of machine learning and robotics calls this assumption into
question by training sensorimotor systems directly for the task at hand,
from pixels to actions, with no explicit intermediate representations.
Thus the central question of our work: Does computer vision matter
for action? Our results indicate that it does. Models equipped with
explicit intermediate representations train faster, achieve higher task
performance, and generalize better to previously unseen environments.
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A Doom-based AI research platform for visual reinforcement learning,
IEEE Conference on Computational Intelligence and Games (2016).

11. P. Anderson, A. X. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, A. R. Zamir, On
evaluation of embodied navigation agents, arXiv:1807.06757 (2018).

12. M. Lin, Q. Chen, S. Yan, Network in network, ICLR (2014).
13. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network

training by reducing internal covariate shift, ICML (2015).
14. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, ICLR

(2015).
15. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for

biomedical image segmentation, MICCAI (2015).
16. A. Sax, B. Emi, A. Zamir, L. Guibas, S. Savarese, J. Malik, Mid-level

visual representations improve generalization and sample efficiency
for learning active tasks, arXiv:1812.11971 (2018).

17. A. Mousavian, A. Toshev, M. Fiser, J. Kosecka, A. Wahid, J. Davidson,
Visual representations for semantic target driven navigation, ICRA
(2019)

ACKNOWLEDGMENTS

Author contributions. B.Z., P.K., and V.K. formulated the study, de-
veloped the methodology, and designed the experiments. B.Z. and
P.K. developed the experimental infrastructure and performed the ex-
periments. B.Z., P.K., and V.K. analyzed data and wrote the paper.
Competing interests. The authors declare that they have no compet-
ing interests. Material availability. For data not presented in this
paper and/or in the supplementary materials, please contact the cor-
responding author. Code and data for reproducing the results will be
released upon publication.



Focus Intel and UT Austin 3

SUPPLEMENTARY MATERIALS

Supplement S1. Synopsis of findings.
Supplement S2. Materials and methods.
Supplement S3. Experiments and analysis.

SUPPLEMENTARY MATERIALS

S1. SYNOPSIS OF FINDINGS

We report controlled experiments that assess whether specific vision
capabilities, as developed in computer vision research, are useful in
mobile sensorimotor systems that act in complex three-dimensional
environments. To conduct these experiments, we use realistic three-
dimensional simulations derived from immersive computer games.
We instrument the game engines to support controlled execution of
specific scenarios that simulate tasks such as driving a car, traversing a
trail in rough terrain, and battling opponents in a labyrinth. We then
train sensorimotor systems equipped with different vision modules and
measure their performance on these tasks.

Our baselines are end-to-end pixels-to-actions models that are
trained directly for the task at hand. These models do not rely on
any explicit computer vision modules and embody the assumption that
perceptual capabilities will arise as needed, in the course of learning to
perform the requisite sensorimotor task. To these we compare models
that receive as additional input the kinds of representations that are
produced by modules developed in computer vision research, such as
semantic label maps, depth maps, and optical flow. We can therefore
assess whether representations produced in computer vision are useful
for the sensorimotor challenges we study. In effect, we ask: What if a
given vision task was solved? Would this matter for learning to act in
complex three-dimensional environments?

Our first finding is that computer vision does matter. When agents
are provided with representations studied in computer vision research,
such as semantic label maps and depth maps, they achieve higher
performance in sensorimotor tasks. The effect is significant and is
consistent across simulation platforms and tasks.

We then examine in finer granularity how useful specific computer
vision capabilities are in this context. To the extent that the computer
vision research community aims to support mobile systems that act in
three-dimensional environments, should it invest in improving seman-
tic segmentation accuracy? Optical flow estimation? Intrinsic image
decomposition? Do all these tasks matter to the same extent? Our
second finding is that some computer vision capabilities appear to be
more impactful for mobile sensorimotor operation than others. Specifi-
cally, semantic scene segmentation and depth estimation provide the
highest boost in task performance among the individual capabilities
we evaluate. (Using all capabilities in concert is more effective still.)
This can further motivate research on image- and video-based depth
estimation, which has gained momentum in recent years, as well as
increased investment in solving multiple vision tasks in concert.

We also conduct supporting experiments that aim to probe the role
of explicit computer vision in detail. We find that explicit computer
vision is particularly helpful in generalization, by providing abstraction
that helps the trained system sustain its performance in previously
unseen environments. We also find that explicit vision boosts train-
ing efficiency, but the performance advantages are maintained even
if the baselines are allowed to train ad infinitum. That is, vision does
not merely accelerate training, it improves task performance even if
training costs are not a factor. We trace this phenomenon to generaliza-
tion: without the abstraction provided by explicit vision, end-to-end
pixels-to-actions models are liable to overfit the training environments.
Finally, we show that the findings hold even when agents predict the
intermediate representations in situ, with no privileged information.

S2. MATERIALS AND METHODS

Environments
We perform experiments using two simulation environments: The open-
world urban and suburban simulation Grand Theft Auto V (GTAV) and
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the VizDoom platform for immersive three-dimensional battles.

Grand Theft Auto V. GTAV is a highly realistic simulation of a func-
tioning city and its surroundings, based on Los Angeles [7, 8]. We
instrumented GTAV to extract multiple vision modalities by inter-
cepting and modifying DirectX rendering commands as the game is
played [9]. The game has an active modding community with tools to
access and manipulate game state. The game’s internal scripting inter-
face provides access to control inputs, such as steering, acceleration,
and braking of the player’s vehicle. The GTAV environment features a
rich set of weather conditions, a full day-night cycle, and a large and
diverse game world. We make use of this during both training and
evaluation. See Figures S6a and S6b for examples.

VizDoom. The VizDoom environment is a lightweight wrapper
around the 1990s video game Doom [10]. The environment uses a 2.5-
dimensional software renderer that stores intermediate representations
in memory buffers. It allows multiple simulations to run in parallel
on the same processor, each running at up to 200× real time. This
makes the VizDoom environment particularly suitable for data-hungry
sensorimotor learning algorithms. VizDoom allows for detailed control
over scenarios via a custom scripting interface [10] and level designer.
See Figure S6c for a visual reference.

Sensorimotor tasks
We set up three major tasks across the two simulators: urban driving
(GTAV), off-road trail traversal (GTAV), and battle (VizDoom).

Urban driving. In the urban driving task, an agent controls the con-
tinuous acceleration, braking, and steering of a car. The agent needs to
navigate a functioning urban road network and avoid obstacles by pro-
cessing a diverse visual input stream. We use the same car model for all
experiments. An agent starts at one of a set of predefined locations on
a street in an urban area. The goal of the task is to reach a correspond-
ing predefined target location without accidents (e.g., collisions with
other vehicles, pedestrians, or the environment). The start and target
locations are directly connected by a major road. If the route contains
intersections, the agent can reach its target by always turning right at
intersections. This avoids higher-level navigation and path finding is-
sues [6]. The task ends if the agent comes within 5 meters of the target,
or damages the vehicle in any way. We measure performance on this
task via two metrics: success rate (SR) and success rate weighted by
track length (WSR). An agent succeeds in scenario i if it comes within
5 meters of the target; this is indicated by Si. We report both success
rate 1

N ∑i Si and success rate weighted by track length ∑i Sili/ ∑i li,
where li is the length of track i. Our success rate is analogous to the
SPL metric [11], since we expect the agent to follow a single path from
the start location to the target. Both metrics are normalized, where
0 means failure on all tracks and 1 means that the agent reached the
target in all tested scenarios. Figure S6a shows some input images for
the urban driving task.

Off-road trail traversal. In this task, the agent operates a dirt bike on
a trail in rough terrain. The agent controls acceleration, brake, and
steering. In comparison to urban driving, this task has fewer dynamic
obstacles, but is more challenging to navigate. The overall evaluation
protocol is analogous to the urban driving task: the agent is tested on a
set of scenarios (start/goal locations) and is evaluated in terms of SR
and WSR. The goal in each scenario is to reach a goal from a start
location. The agent perceives the world via a head-mounted camera.
Figure S6b shows some example input images.

Battle. This task uses the VizDoom environment. We follow the
task setup of Dosovitskiy and Koltun [5] (specifically, D3 in their
nomenclature). In each scenario, the goal is to eliminate as many

enemies as possible while navigating a labyrinth. Enemies directly
engage and potentially kill the agent. Secondary goals include the
collection of ammunition and health packs. The agent controls steering
and forward/backward/left/right motion, and can fire a weapon. We
measure success by the number of enemies killed (frags) per episode,
aggregating statistics over 200,000 time-steps in total. Figure S6c
shows some example views seen by the agent.

Further details. For GTAV, we use geographically non-overlapping
regions for training, validation, and testing. An agent never drives
or rides through a test area during training. All parameters are tuned
on a separate validation set. The training set contains 100 scenarios
(start/goal pairs), validation 20, test 40. For VizDoom, we follow the
standard experimental setup, using the default parameters of Dosovit-
skiy and Koltun [5], with a train/test split across labyrinth layouts.

Modalities

We study five input modalities: raw RGB image, monocular depth esti-
mate, semantic and instance segmentation, optical flow, and material
estimate (albedo).

RGB image. In GTAV, we use the raw RGB image before the head-
up display (HUD) is drawn; i.e., without a map, cursor, and other
auxiliary information. We resize the image to 128× 128 pixels and
scale the color range to [−1, 1]. Figure S7a shows an example. In
VizDoom, we use the simulator output in grayscale normalized to
[−1, 1], following Dosovitskiy and Koltun [5].

Depth. We use both the absolute depth estimate obtained directly
from the rendering engine and a finite-difference surface normal es-
timate. In GTAV, the depth estimate is derived from the depth buffer
of the DirectX rendering pipeline. In VizDoom, the software renderer
produces an 8-bit depth estimate. While the depth image captures the
global structure of the scene, the surface normals bring out local detail.
Figure S7b shows an example.

Segmentation. We compute both semantic and instance segmenta-
tion. In GTAV, we produce instance-level segmentation for pedestrians,
vehicles, and animals, and class-level semantic segmentation for road,
sidewalk, terrain, and objects such as signs and trees. We use the
game’s scripting engine to track all moving objects, and intercept the
rendering commands to segment them [9]. For semantic segmentation,
we manually labelled all texture IDs in the environment [7, 8]. For
VizDoom, we use ‘item’, ‘enemy’, and other object classes, as provided
by the simulator. The label map contains a class-indicator vector for
each pixel. In addition, we use an instance boundary map to represent
instance segmentation. Figure S7c shows an example.

Flow. We use three different representations of optical flow: Plain
optical flow, as the motion of each pixel between consecutive captured
frames; a static motion estimate, caused by parallax or ego-motion;
a dynamic motion estimate, caused by object motion or deformation.
Static and dynamic motion sum up to optical flow. Each motion field
contains a vertical and horizontal component per pixel. In GTAV, we
track all moving objects using the game’s scripting engine to compute
the dynamic flow component. Static flow is derived directly from the
3D location of a pixel and the relative camera motion. For VizDoom,
we track all moving objects as 2D sprites, and compute the static flow
component from the depth map and relative camera motion. We follow
the video understanding literature and clip motion estimates into the
range [−32, 32] and divide by 64 to normalize. We use backward flow
from the current frame to the previous frame, as it is more complete
for agents moving forward. Figure S7e shows an example.
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Albedo. We compute the intrinsic surface color of each pixel, known
as albedo. The albedo factors out the effect of lighting and represents
the intrinsic material properties of objects. Albedo is represented as
an RGB image normalized to [−1, 1]. This modality is only available
in GTAV, where it is explicitly represented in the rendering pipeline.
Figure S7d shows an example.

Agents
We parameterize all agents as reactive deep networks. They observe
the current input modalities and predict the next action.

GTAV. We train the GTAV agent by imitation learning. For each
task, we construct 100/20/40 scenarios for our train/validation/test sets
respectively. The three sets are located in different geographic regions
of the map. Each scenario ranges from 50 to 400 meters in length,
with an average of 250 meters. To collect training data for imitation
learning, we use the game’s internal autopilot through the built-in
scripting library. The autopilot has access to the internal game state and
completes each scenario perfectly. The autopilot exposes all the control
commands through the scripting interface, but does not allow a player
(or agent) to take control once engaged. We record the autopilot’s
actions on each training scenario and capture the input modalities,
actions (speed, steering angle), and other game state information at 8
frames per second (FPS). Since the autopilot drives close to perfectly,
this basic training scheme never learns to recover from mistakes. To
counteract this, we inject noisy actions following the setup of Codevilla
et al. [6]. We inject 0.25 seconds of noise for every 5 seconds of driving.
Frames with injected noise are not used for training, the recovery is.

The agent uses a deep fully-convolutional control network F to
output the steering angle θ, given the input modalities of the current
time step. We use a network-in-network model [12], with the addition
of batch normalization [13] before every major convolution block, and
leaky ReLU with slope 0.2. These two modifications stabilize and
accelerate training. The architecture is visualized in Figure S2.
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Fig. S2. Imitation learning agent architecture. Figure S10 pro-
vides more architecture details.

Each agent sees 100K training frames, the equivalent of 3.5 hours of
game time, unless otherwise stated. Training tracks are visited multiple
times under different time-of-day and weather conditions.

The control network is trained using the Adam optimizer [14], with
batch size 64 and learning rate 10−4, using an L1 loss between the
network output F(x) and the autopilot’s output θ. We experimented
with several different loss functions, such as mean squared error or
binned angular classification, but the simple L1 performed best. We
train each network for 100K iterations, decaying the learning rate by 1

2
every 25k iterations. Full convergence takes ∼ 1 day.

We use a PID controller for acceleration and braking. The PID
controller targets a constant velocity for each task. The controller
accelerates (positive control) or brakes the vehicle (negative control)
to maintain a constant speed of 15 miles per hour for the mountain
biking task, and 25 miles per hour for the urban driving task. The agent

updates the control input 8 times per second. In between updates the
control signal is repeated.

VizDoom. The VizDoom agent is trained with Direct Future Predic-
tion (DFP) [5], a sensorimotor learning algorithm that uses a stream
of measurements as supervisory signal. A DFP agent takes in three
inputs: an image, state measurements (health, ammo, etc.), and a goal
vector of the desired state measurements (maximize health, ammo,
frags). A separate neural-network submodule processes each input into
an intermediate representation. A prediction network produces two
outputs from this intermediate representation: the expected value of
the future measurements over all actions, and the differences in future
measurements for all actions. We use a 6-layer convolutional network
modeled after the Atari architecture of Mnih et al. [3]. DFP uses an
experience buffer starting from a random policy and actions sampled
using an ε-greedy policy. ε decays over training epochs. Given this
experience buffer, DFP trains the prediction network by minimizing
the L1 difference between the predictions and the future measurements.
See Dosovitskiy and Koltun [5] for more details and hyperparameters.

The DFP agent predicts its own future state conditioned on the
current action, and chooses the optimal action every four frames. Each
agent sees a total of 50 million training frames (the equivalent of 2.2
months of subjective time) unless otherwise stated. We normalize all
input modalities and stack them as channels in the input image.

Vision networks
To predict the vision modalities, we use a U-net [15], an encoder-
decoder architecture with skip connections. To save computation,
we use a single encoder, with a separate decoder for each predicted
modality. The architecture is specified in detail in Figure S3. The
prediction network takes two images as input, representing the current
and previous time steps. (The previous time step is only needed for
optical flow.) We use a separate loss function for each modality. Depth,
normal, factored flow, and albedo use the L1 distance between the
prediction and the ground truth. We normalize the ground-truth data
for training. Segmentation and boundary prediction are trained using a
cross-entropy loss. All loss functions are summed without weighting
them individually. The network jointly infers all modalities in roughly
100ms.
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Fig. S3. Network architecture used to infer the vision modali-
ties. Vision modalities are inferred by a U-net. Figure S11 provides
further architecture details.

S3. EXPERIMENTS AND ANALYSIS

Figure S8 summarizes the main results on the three tasks. For each
task, we compare an image-only agent with an agent for which various
aspects of computer vision are solved. The agent observes the ground-
truth vision modalities during both training and testing. For GTAV, we
report the success rate (SR) and weighed success rate (WSR) across
all test scenarios. We ran the entire evaluation 3 times for different
daytime and weather conditions. We report the mean and standard
deviation for each metric. For VizDoom, we report the average number
of enemies killed (frags) over 3 x 50,000 steps of testing. Here as well
we report mean and standard deviation.
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The results indicate that ground-truth vision modalities help signifi-
cantly. On urban driving and off-road traversal, the success rate roughly
doubles when all modalities are used. In VizDoom, the number of frags
increases by more than 20%. All results are statistically significant.

This increased performance could come from various sources. One
possibility is that vision-equipped agents generalize better. Another
possibility is that the vision modalities provide information that is not
otherwise present in the image. We investigate each of these hypotheses
independently.

First, we evaluate how much of the vision-equipped agents’ perfor-
mance comes from the ground-truth modalities, and how much can be
inferred by a computer vision model that runs in situ with no access
to ground-truth data at test time. This is the ‘predicted’ condition.
Figure S9 summarizes the results. Even with a simple U-net model, the
inferred vision modalities significantly improve upon the performance
of the image-only agent across all tasks.

Next, we investigate if a sufficiently powerful image-only network
with the right structure could learn a good generalizable representation
given enough data. We train a sensorimotor agent using the same
network structure as the model used in the ‘predicted’ condition, but
without ground-truth supervision during training. This is the ‘unsu-
pervised’ condition. This agent is trained end-to-end using the same
imitation learning objective as the image-only agent, and does not
receive any additional supervision. Figure S5 shows the performance
of a ground truth agent, compared to a ‘predicted’ and ‘unsupervised’
agent as the training set size increases on Urban driving and Off-road
traversal. The performance of the unsupervised agent increases with
the size of the training set, but requires an order of magnitude more
data to reach the performance of the predicted vision agent.

Next, we compare the performance of unsupervised, predicted, and
ground-truth agents on the training set. The results are reported in
Table S1. In order to report compatible statistics, we included a subset
of the test tracks in the training set for these experiments. Table S1
reports performance on these tracks. All agents attain nearly perfect
performance in this condition. This indicates that the differences
between these agents in other experiments can be attributed to different
generalization abilities.

Finally, Figure S4 shows the performance for the Battle task as the
training set grows. We compare image-only and image+vision agents.
As the training set grows, the image+vision agent quickly begins to
outperform the image-only agent, reaching higher performance with
less data.
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Fig. S4. Performance of image-only and vision-equipped agents
as a function of training set size on battle. The shaded area shows
the standard deviation of the evaluation metric across different evalu-
ation runs.

Discussion
Our main results indicate that sensorimotor agents can greatly benefit
from predicting explicit intermediate representations of scene content,
as posited in computer vision research. Across three challenging tasks,
an agent that sees not just the image but also the kinds of interme-
diate representations that are pursued in computer vision performs
significantly better at sensorimotor control.

Which modalities help most? Across all tasks, semantic and in-
stance segmentation help significantly. Semantic segmentation clearly
highlights the drivable or walkable area, and obstacles in the agent’s
path show up in the semantic label map and the instance boundaries.
The drivable area in particular can be challenging to infer from the raw
image in an urban environment, while being clearly delineated in the
semantic segmentation. The size and shape of instances in the instance
segmentation provides useful cues about the distance and heading of
obstacles and other agents.

Depth and normal maps also boost sensorimotor performance.
Nearby obstacles are clearly visible in the depth map and the nor-
mal map. Depth also provides a direct distance estimate to obstacles,
allowing the agent to prioritize which scene elements to focus on.

Optical flow and intrinsic material properties appear less helpful.

Agents with explicit vision generalize better. The benefits of explicit
vision are particularly salient when it comes to generalization. Equip-
ping a sensorimotor agent with explicit intermediate representations of
the scene leads to more general sensorimotor policies. In urban driving
and off-road traversal, the training set performance of unsupervised,
predicted, and ground-truth agents is nearly tied in success rate. They
all fit the training set well, as shown in Table S1. However, when we
test generalization to new areas, the ground-truth agent outperforms
the unsupervised agent on the test set even with an order of magnitude
less experience with the task during training (Figure S5).

Does more data help? Could it be that an unsupervised agent simply
needs to undergo more training to learn to act well? Perhaps with
sufficient training, the performance of the image-only agent will catch
up with its vision-equipped counterparts? Experiments reported in
Figure S5 indicate that this is not straightforward. Even when provided
with an order of magnitude more training data, the unsupervised agent
does not learn to perform as well as the vision-equipped agent.
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Urban driving Off-road traversal

SR WSR SR WSR

Unsupervised 0.97 ± 0.05 0.98 ± 0.04 1.0 ± 0.0 1.0 ± 0.0

Predicted 1.0 ± 0.0 1.0 ± 0.0 0.94 ± 0.01 0.95 ± 0.01

Ground Truth 0.97 ± 0.05 0.95 ± 0.08 0.98 ± 0.03 0.99 ± 0.02

Table S1. Performance of image-only and vision-equipped agents on training tracks. All models fit the training data almost perfectly.
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(a) Urban driving
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(b) Off-road traversal

Fig. S5. Performance of unsupervised, predicted, and ground-truth vision agents as a function of training set size. The shaded area shows
the standard deviation of the evaluation metric across different evaluation runs. All models share the same control network architecture. Unsuper-
vised and predicted conditions share the same vision network architecture.
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(a) Urban driving

(b) Off-road traversal

(c) Battle

Fig. S6. Three sensorimotor tasks used in our experiments. For each task, we show three views from the agent’s viewpoint.
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(a) RGB Image (b) Depth (left) and surface normals (right)

(c) Segmentation: semantic (left) and instance boundaries (right). (d) Albedo

(e) Optical Flow. Full (left) and factored into static (center) and dynamic flow (right).

Fig. S7. Different computer vision modalities used in our experiments, illustrated on the urban driving task. For normal maps, the inset
shows the different normal directions projected onto a virtual sphere. For optical flow, the inset shows the flow direction as an offset to the center
pixel.
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g SR 0.35 ± 0.03 0.40 ± 0.03 0.45 ± 0.04 0.48 ± 0.02 0.54 ± 0.05 0.67 ± 0.02

WSR 0.32 ± 0.05 0.32 ± 0.04 0.38 ± 0.06 0.48 ± 0.05 0.53 ± 0.08 0.71 ± 0.08

O
ff

-r
oa

d
tr

av
er

sa
l SR 0.42 ± 0.03 0.43 ± 0.01 0.54 ± 0.01 0.81 ± 0.02 0.78 ± 0.03 0.89 ± 0.02

WSR 0.40 ± 0.03 0.41 ± 0.01 0.52 ± 0.01 0.80 ± 0.03 0.76 ± 0.03 0.87 ± 0.02

B
at

tle Frags 29.6 ± 1.2 – 30.0 ± 0.6 30.9 ± 0.4 34.8 ± 0.4 36.2 ± 0.4

(d) Corresponding numeric results

Fig. S8. Performance of agents equipped with different input representations. The black whiskers show standard deviations across different
evaluation runs.
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g SR 0.35 ± 0.03 0.45 ± 0.01 0.44 ± 0.02 0.53 ± 0.01 0.55 ± 0.01 0.56 ± 0.03

WSR 0.32 ± 0.05 0.32 ± 0.01 0.33 ± 0.01 0.45 ± 0.02 0.44 ± 0.02 0.47 ± 0.03
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l SR 0.42 ± 0.03 0.51 ± 0.03 0.47 ± 0.02 0.65 ± 0.00 0.64 ± 0.03 0.64 ± 0.02

WSR 0.40 ± 0.03 0.48 ± 0.04 0.44 ± 0.02 0.65 ± 0.01 0.63 ± 0.04 0.62 ± 0.03

B
at

tle Frags 29.6 ± 1.2 – 30.35 ± 0.19 30.36 ± 0.18 34.28 ± 0.80 34.00 ± 0.42

(d) Corresponding numeric results

Fig. S9. Performance of agents equipped with different predicted input representations. The black whiskers show standard deviations
across different evaluation runs.

Layer Output shape

Image 128× 128× c

Conv 5x5 + LReLU 128× 128× 192
Conv 1x1 + LReLU 128× 128× 160
Conv 1x1 + LReLU 128× 128× 96
Max-Pool 3x3 64× 64× 96
Dropout 64× 64× 96

Batch Norm 64× 64× 96
Conv 5x5 + LReLU 64× 64× 192
Conv 1x1 + LReLU 64× 64× 192
Conv 1x1 + LReLU 64× 64× 192
Avg-Pool 3x3 32× 32× 192
Dropout 32× 32× 192

Batch Norm 32× 32× 192
Conv 3x3 + LReLU 32× 32× 192
Conv 1x1 + LReLU 32× 32× 192
Conv 1x1 32× 32× 1

Global Average Pooling 1

Fig. S10. Imitation learning agent architecture. The number of input channels is dependent on which vision modalities the agent has access
to. The last layer of the network averages the values over all pixel locations to produce the final action.
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Layer Output shape

Current + Prev RGB 128× 128× 6

Conv 3x3 (Encoder 1) 128× 128× 32
Max-Pool 3x3 64× 64× 32
ConvBlock (Encoder 2) 64× 64× 64
Max-Pool 3x3 32× 32× 64
ConvBlock (Encoder 3) 32× 32× 128
Max-Pool 3x3 16× 16× 128
ConvBlock (Encoder 4) 16× 16× 256
Max-Pool 3x3 8× 8× 256
ConvBlock 8× 8× 512

(a) Encoder architecture.

Layer Output shape

Encoder Features 8× 8× 512

Conv 3x3 8× 8× 256
Upsample 16× 16× 256
Concat Encoder 4 16× 16× 512
ConvBlock 16× 16× 256

Conv 3x3 16× 16× 128
Upsample 32× 32× 128
Concat Encoder 3 32× 32× 256
ConvBlock 32× 32× 128

Conv 3x3 32× 32× 64
Upsample 64× 64× 64
Concat Encoder 2 64× 64× 128
ConvBlock 64× 64× 64

Conv 3x3 64× 64× 32
Upsample 128× 128× 32
Concat Encoder 1 128× 128× 64
ConvBlock 128× 128× 32

Conv 3x3 128× 128× c

(b) Decoder architecture.

Fig. S11. Network architecture used to infer the vision modalities. A ConvBlock consists of BN-Conv3x3-LReLU-Conv3x3-LRelu-
Conv1x1. In the encoder, the ConvBlock output has twice as many channels as the input. In the decoder, the ConvBlock outputs have half as
many channels as the input. One decoder network is trained for each predicted modality. All modalities share the encoder. The depicted structure
is used in urban driving and off-road traversal. Battle agents use an analogous structure with one less layer in the encoder and the decoder.
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