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Abstract

To understand the world, we humans constantly need to
relate the present to the past, and put events in context.
In this paper, we enable existing video models to do the
same. We propose a long-term feature bank—supportive
information extracted over the entire span of a video—to
augment state-of-the-art video models that otherwise would
only view short clips of 2-5 seconds. Our experiments
demonstrate that augmenting 3D convolutional networks
with a long-term feature bank yields state-of-the-art results
on three challenging video datasets: AVA, EPIC-Kitchens,
and Charades. Code is available online1.

1. Introduction
What is required to understand a movie? Many aspects

of human intelligence, for sure, but memory is particularly
important. As a film unfolds there’s a constant need to relate
whatever is happening in the present to what happened in
the past. Without the ability to use the past to understand
the present, we, as human observers, would not understand
what we are watching.

In this paper, we propose the idea of a long-term feature
bank that stores a rich, time-indexed representation of the
entire movie. Intuitively, the long-term feature bank stores
features that encode information about past and (if avail-
able) future scenes, objects, and actions. This information
provides a supportive context that allows a video model,
such as a 3D convolutional network, to better infer what
is happening in the present (see Fig. 1, 2, and 5).

We expect the long-term feature bank to improve state-
of-the-art video models because most make predictions
based only on information from a short video clip, typi-
cally 2-5 seconds [5, 33, 46–48, 51, 52, 56]. The reason for
this short-term view is simple: benchmark advances have
resulted from training end-to-end networks that use some
form of 3D convolution, and these 3D convolutions require
dense sampling in time to work effectively. Therefore, to fit
in GPU memory the video inputs must be short.

1https://github.com/facebookresearch/
video-long-term-feature-banks
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Figure 1. What are these people doing? Current 3D CNN video
models operate on short clips spanning only ∼4 seconds. With-
out observing longer-term context, recognition is difficult. (Video
from the AVA dataset [14]; see next page for the answer.)

The long-term feature bank is inspired by works that
leverage long-range temporal information by using pre-
computed visual features [25, 31, 45, 57]. However, these
approaches extract features from isolated frames using an
ImageNet pre-trained network, and then use the features as
input into a trained pooling or recurrent network. Thus the
same features represent both the present and the long-term
context. In contrast, we propose to decouple the two: the
long-term feature bank is an auxiliary component that aug-
ments a standard video model, such as a state-of-the-art 3D
CNN. This design enables the long-term feature bank to
store flexible supporting information, such as object detec-
tion features, that differ from what the 3D CNN computes.

Integrating the long-term feature bank with 3D CNNs
is straightforward. We show that a variety of mechanisms
are possible, including an attentional mechanism that relates
information about the present (from the 3D CNN) to long-
range information stored in the long-term feature bank. We
illustrate its application to different tasks with different out-
put requirements: we show results on datasets that require
object-level as well as frame- or video-level predictions.

Finally, we conduct extensive experiments demonstrat-
ing that augmenting 3D CNNs with a long-term fea-
ture bank yields state-of-the-art results on three challeng-
ing video datasets: AVA spatio-temporal action localiza-
tion [14], EPIC-Kitchens verb, noun, and action classifica-
tion [6], and Charades video classification [38]. Our abla-
tion study establishes that the improvements on these tasks
arise from the integration of long-term information.

https://github.com/facebookresearch/video-long-term-feature-banks
https://github.com/facebookresearch/video-long-term-feature-banks
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Figure 2. The action becomes clear when relating the target frame to the long-range context. Our long-term feature bank provides long-
term supportive information that enables video models to better understand the present. (AVA ground-truth label: ‘listening to music’.)

2. Related Work
Deep networks are the dominant approach for video un-
derstanding [5, 21, 33, 39, 46–48, 50, 51, 56]. This includes
the highly successful two-stream networks [21, 39, 50] and
3D convolutional networks [5,33,46–48,51,56]. In this pa-
per, we use 3D CNNs, but the long-term feature bank can
be integrated with other families of video models as well.

Temporal and relationship models include RNNs that
model the evolution of video frames [7, 24, 27, 44, 57]
and multilayer perceptrons that model ordered frame fea-
tures [58]. To model finer-grained interactions, a growing
line of work leverages pre-computed object proposals [52]
or detections [4,30], and models their co-occurrence [30,43,
52], temporal order [4], or spatial arrangement [52] within
a short clip.

Long-term video understanding with modern CNNs is
less explored, in part due to GPU memory constraints.
One strategy to overcome these constraints is to use pre-
computed features without end-to-end training [25, 31, 45,
57]. These methods do not optimize features for a target
task, and thus are likely suboptimal. Another strategy is
to use aggressive subsampling [50, 58] or large striding [8].
TSN [50] samples 3-7 frames per video. ST-ResNet [8] uses
a temporal stride of 15. To our knowledge, our approach
is the first that enjoys the best of three worlds: end-to-end
learning for strong short-term features with dense sampling
and decoupled, flexible long-term modeling.

Spatio-temporal action localization is an active research
area [12, 14, 17, 32, 40, 53]. Most recent approaches ex-
tend object detection frameworks [10, 34] to first propose
tubelets/boxes in a short clip/frame, and then classify the
tubelets/boxes into action classes [14, 17, 20, 32, 36, 36].
The detected tubelets/boxes can then be optionally linked
to form full action tubes [12, 17, 20, 32, 36, 40]. In contrast
to our method, these methods find actions within each frame
or clip independently without exploiting long-term context.

Information ‘bank’ representations, such as object
bank [26], detection bank [1], and memory networks [42]
have been used as image-level representations, for video in-
dexing and retrieval, and for modeling information in text
corpora. We draw inspiration from these approaches and de-
velop methodologies for detailed video understanding tasks.

3. Long-Term Feature Bank Models
For computer vision models to make accurate predic-

tions on long, complex videos they will certainly require the
ability to relate what is happening in the present to events
that are distant in time. With this motivation in mind, we
propose a model with a long-term feature bank to explicitly
enable these interactions.

3.1. Method Overview

We describe how our method can be used for the task
of spatio-temporal action localization, where the goal is to
detect all actors in a video and classify their actions. Most
state-of-the-art methods [9, 14, 43] combine a ‘backbone’
3D CNN (e.g., C3D [46], I3D [5]) with a region-based per-
son detector (e.g., Fast/Faster R-CNN [10, 34]). To process
a video, it is split into short clips of 2-5 seconds, which are
independently forwarded through the 3D CNN to compute
a feature map, which is then used with region proposals and
region of interest (RoI) pooling to compute RoI features for
each candidate actor [9,14]. This approach, which captures
only short-term information, is depicted in Fig. 3a.

The central idea in our method is to extend this approach
with two new concepts: (1) a long-term feature bank that
intuitively acts as a ‘memory’ of what happened during the
entire video—we compute this as RoI features from de-
tections at regularly sampled time steps; and (2) a feature
bank operator (FBO) that computes interactions between
the short-term RoI features (describing what actors are do-
ing now) and the long-term features. The interactions may
be computed through an attentional mechanism, such as a
non-local block [51], or by feature pooling and concatena-
tion. Our model is summarized in Fig. 3b. We introduce
these concepts in detail next.

3.2. Long-Term Feature Bank

The goal of the long-term feature bank, L, is to provide
relevant contextual information to aid recognition at the cur-
rent time step. For the task of spatio-temporal action lo-
calization, we run a person detector over the entire video
to generate a set of detections for each frame. In parallel,
we run a standard clip-based 3D CNN, such as C3D [46] or
I3D [5], over the video at regularly spaced intervals, such as
every one second. We then use RoI pooling to extract fea-
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Figure 3. We contrast our model with standard methods. (a) 3D CNN: vanilla 3D CNNs process a short clip from a video (e.g., 2-5
seconds) and use pooling to obtain a representation of the clip (e.g., [5, 46, 51]). (b) Long-Term Feature Bank (Ours): We extend the
vanilla 3D CNN with a long-term feature bank L and a feature bank operator FBO(S, L̃) that computes interactions between the short-term
and long-term features. Our model is able to integrate information over a long temporal support, lasting minutes or even the whole video.

tures for all person detections at each time-step processed
by the 3D CNN. Formally, L = [L0, L1, . . . , LT−1] is a
time-indexed list of features for video time steps 0, . . . , T −
1, whereLt ∈ RNt×d is the matrix ofNt d-dimensional RoI
features at time t. Intuitively, L provides information about
when and what all actors are doing in the whole video and it
can be efficiently computed in a single pass over the video
by the detector and 3D CNN.

3.3. Feature Bank Operator

Our model references information from the long-term
features L via a feature bank operator, FBO(St, L̃t).
The feature bank operator accepts inputs St and L̃t,
where St is the short-term RoI pooled feature and L̃t is
[Lt−w, . . . , Lt+w], a subset of L centered at the current clip
at t within ‘window’ size 2w + 1, stacked into a matrix
L̃t ∈ RN×d, where N =

∑t+w
t′=t−wNt′ . We treat the win-

dow size 2w+1 as a hyperparameter that we cross-validate
in our experiments. The output is then channel-wise con-
catenated with St and used as input into a linear classifier.

Intuitively, the feature bank operator computes an up-
dated version of the pooled short-term features St by relat-
ing them to the long-term features. The implementation of
FBO is flexible. Variants of attentional mechanisms are an
obvious choice and we will consider multiple instantiations
in our experiments.

Batch vs. Casual. Thus far we have assumed a batch set-
ting in which the entire video is available for processing.
Our model is also applicable to online, casual settings. In
this case, L̃t contains only past information of window size
2w + 1; we consider both batch and causal modes of oper-
ation in our experiments.

3.4. Implementation Details

Backbone. We use a standard 3D CNN architecture from
recent video classification work. The model is a ResNet-
50 [16] that is pre-trained on ImageNet [35] and ‘inflated’
into a network with 3D convolutions (over space and time)

using the I3D technique [5]. The network structure is modi-
fied to include non-local operations [51]. After inflating the
network from 2D to 3D, we pre-train it for video classifica-
tion on the Kinetics-400 dataset [5]. The model achieves
74.9% (91.6%) top-1 (top-5) accuracy on the Kinetics-
400 [5] validation set. Finally, we remove the temporal
striding for conv1 and pool1 following [52], and remove the
Kinetics-specific classification layers to yield the backbone
model. The exact model specification is given in Supple-
mentary Material. The resulting network accepts an input
of shape 32 × H × W × 3, representing 32 RGB frames
with spatial size H ×W , and outputs features with shape
16×H/16×W/16× 2048. The same architecture is used
to compute short-term features S and long-term features L.
Parameters are not shared between these two models unless
otherwise noted.

RoI Pooling. We first average pool the video backbone fea-
tures over the time axis. We then use RoIAlign [15] with a
spatial output of 7× 7, followed by spatial max pooling, to
yield a single 2048 dimensional feature vector for the RoI.
This corresponds to using a temporally straight tube [14].

Feature Bank Operator Instantiations. The feature bank
operator can be implemented in a variety of ways. We ex-
periment with the following choices; others are possible.

– LFB NL: Our default feature bank operator
FBONL(St, L̃t) is an attention operator. Intuitively, we use
St to attend to features in L̃t, and add the attended informa-
tion back to St via a shortcut connection. We use a simple
implementation in which FBONL(St, L̃t) is a stack of up
to three non-local (NL) blocks [51]. We replace the self-
attention of the standard non-local block [51] with atten-
tion between the local features St and the long-term feature
window L̃t, illustrated in Fig. 4. In addition, our design
uses layer normalization (LN) [3] and dropout [41] to im-
prove regularization. We found these modifications to be
important since our target tasks contain relatively few train-
ing videos and exhibit overfitting. The stack of modified
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Figure 4. Our modified non-local block design. Here we plot
the first layer S(1)

t = NL′
θ1(St, L̃t) as an example. ‘⊗’ denotes

matrix multiplication, and ‘⊕’ denotes element-wise sum.

non-local blocks, denoted as NL′, is iterated as:

S
(1)
t = NL′θ1(St, L̃t),

S
(2)
t = NL′θ2(S

(1)
t , L̃t),

...
where θ{1,2,... } are learnable parameters. Similar to
Wang et al. [52], we use a linear layer to reduce the FBONL
input dimensionality to 512 and apply dropout [41] with rate
0.2. Thus the input of the final linear classifier is 2048 (St)
+ 512 (FBONL output) = 2560 dimensional.

– LFB Avg/Max: This version uses a simpler variant in
which FBOpool(St, L̃t) = pool(L̃t), where pool can be ei-
ther average or max pooling. This implementation results in
a classifier input that is 2048 (St) + 2048 (FBOpool output)
= 4096 dimensional.
Training. Joint, end-to-end training of the entire model
(Fig. 3b) is not feasible due to the computational and mem-
ory complexity of back-propagating through the long-term
feature bank. Instead, we treat the 3D CNN and detector
that are used to compute L as fixed components that are
trained offline, but still on the target dataset, and not up-
dated subsequently. We have experimented with alternating
optimization methods for updating these models, similar to
target propagation [23], but found that they did not improve
results. Dataset-specific training details are given later.
A Baseline Short-Term Operator. To validate the bene-
fit of incorporating long-term information, we also study a
‘degraded’ version of our model that does not use a long-
term feature bank. Instead, it uses a short-term operator
that is identical to FBONL, but only references the infor-
mation from within a clip: STO(St) := FBONL(St, St).
STO is conceptually similar to [52] and allows for back-
propagation. We observed substantial overfitting with STO
and thus applied additional regularization techniques. See
Supplementary Material for details.

4. Experiments on AVA
We use the AVA dataset [14] for extensive ablation stud-

ies. AVA consists of 235 training videos and 64 validation
videos; each video is a 15 minute segment taken from a
movie. Frames are labeled sparsely at 1 FPS. The labels
are: one bounding box around each person in the frame to-
gether with a multi-label annotation specifying which ac-
tions the person in the box is engaged in within ±0.5 sec-
onds of the labeled frame. The action label space is defined
as 80 ‘atomic’ actions defined by the dataset authors.

The task in AVA is spatio-temporal action localization:
each person appearing in a test video must be detected in
each frame and the multi-label actions of the detected per-
son must be predicted correctly. The quality of an algorithm
is judged by a mean average precision (mAP) metric that re-
quires at least 50% intersection over union (IoU) overlap for
a detection to be matched to the ground-truth while simul-
taneously predicting the correct actions.

4.1. Implementation Details

Next, we describe the object detector, input sampling,
and training and inference details used for AVA.

Person Detector. We use Faster R-CNN [34] with a
ResNeXt-101-FPN [28, 55] backbone for person detection.
The model is pre-trained on ImageNet [35] and COCO key-
points [29], and then fine-tuned on AVA bounding boxes;
see Supplementary Material for training details. The final
model obtains 93.9 AP@50 on the AVA validation set.

Temporal Sampling. Both short- and long-term features
are extracted by 3D CNNs that use 32 input frames sampled
with a temporal stride of 2 spanning 63 frames (∼2 seconds
in 30 FPS video). Long-term features are computed at one
clip per second over the whole video, with a 3D CNN model
(Fig. 3a) fine-tuned on AVA.

Training. We train our models using synchronous SGD
with a minibatch size of 16 clips on 8 GPUs (i.e., 2 clips
per GPU), with batch normalization [18] layers frozen. We
train all models for 140k iterations, with a learning rate of
0.04, which is decreased by a factor of 10 at iteration 100k
and 120k. We use a weight decay of 10−6 and momentum
of 0.9. For data augmentation, we perform random flip-
ping, random scaling such that the short side ∈ [256, 320]
pixels, and random cropping of size 224×224. We use
both ground-truth boxes and predicted boxes with scores at
least 0.9 for training. This accounts for the discrepancy be-
tween ground-truth-box distribution and predicted-box dis-
tribution, and we found it beneficial. We assign labels of a
ground-truth box to a predicted box if they overlap with IoU
at least 0.9. A predicted box might have no labels assigned.
Since the number of long-term features N differs from clip
to clip, we pad zero-vectors for clips with fewer long-term
features to simplify minibatch training.



Support (sec.) 2 3 5 10 15 30 60
3D CNN 22.1 22.2 22.3 20.0 19.7 17.5 15.7
STO 23.2 23.6 23.3 21.5 20.9 18.5 16.9
LFB (causal) - 24.0 24.3 24.6 24.8 24.6 24.2
LFB (batch) - 24.2 24.7 25.2 25.3 25.3 25.5

(a) Temporal support (mAP in %)

mAP
K400 feat. 19.7
AVA feat. 24.3
LFB 25.5

(b) Feature decoupling

mAP
Avg pool 23.1
Max pool 23.2
NL 25.5

(c) LFB operator

mAP
Global pool 24.9
2 × 2 Grid 25.1
4 × 4 Grid 25.1
Detection 25.5

(d) LFB spatial design

mAP
1L 25.1
2L (default) 25.5
2L w/o scale 25.2
2L w/o LN 23.9
2L w/o dropout 25.4
2L (dot product) 25.5
2L (concat) 25.3
3L 25.8

(e) LFB NL design

params FLOPs mAP
3D CNN 1× 1× 22.1
3D CNN ×2 2× 2× 22.9
STO 1.00× 1.12× 23.2
STO ×2 2.00× 2.24× 24.1
LFB (2L) 2.00× 2.12× 25.5
LFB (3L) 2.00× 2.15× 25.8

(f) Model complexity

mAP
R50-I3D-NL

center-crop (default) 25.8
R101-I3D-NL

center-crop (default) 26.8
3-crop 27.1
3-crop+flips 27.4
3-crop+flips+3-scale 27.7

(g) Backbone & testing

model flow val test
AVA [14] X 15.6 -
ACRN [43] X 17.4 -
RTPR [24] X 22.3 -
9-model ens. [19] X 25.6 21.1
R50-I3D-NL [19] 19.3 -
RTPR [24] 20.5 -
Girdhar et al. [9] 21.9 21.0
LFB (R50) 25.8 24.8
LFB (best R101) 27.7 27.2

(h) Comparison to prior work
Table 1. AVA ablations and test results. STO: 3D CNN with a non-local (NL) short-term operator; LFB: 3D CNN with a long-term
feature bank; the LFB operator is a two-layer (2L) NL block by default. We perform ablations on the AVA spatio-temporal action
localization. The results validate that longer-term information is beneficial, that the improvement is larger than what would be observed by
ensembling, and demonstrate various design choices. Finally, we show state-of-the-art results on the AVA test set.

Inference. At test time we use detections with scores ≥
0.85. All models rescale the short side to 256 pixels and
use a single center crop of 256×256. For both training and
inference, if a box crosses the cropping boundary, we pool
the region within the cropped clip. In the rare case where a
box falls out of the cropped region, RoIAlign [15] pools the
feature at the boundary.

4.2. Ablation Experiments

Temporal Support. We first analyze the impact of increas-
ing temporal support on models both with and without LFB.
For models without LFB, we evaluate a vanilla 3D CNN
(Fig. 3a) and a 3D CNN extended with STO (denoted ‘STO’
in tables). To increase their temporal support, we increase
the temporal stride but fix the number of input frames so
that the model covers a longer temporal range while still
being feasible to train. To increase the temporal support of
LFB models, we increase the ‘window size’ 2w + 1 of L̃t.

Table 1a compares model performance. Increasing tem-
poral support through striding in fact hurts the performance
of both ‘3D CNN’ and ‘STO’. Temporal convolution might
not be suitable for long-term patterns, since long-term pat-
terns are more diverse, and include challenging scene cuts.
On the other hand, increasing temporal support by adding
an LFB steadily improves performance, leading to a large
gain over the original ‘3D CNN’ (22.1→ 25.5). The online
(causal) setting shows a similar trend.

Overall we observe strong improvements given by long-
range context even though AVA actions are designed to be
‘atomic’ and localized within ±0.5 seconds. For the rest of
the ablation study, we focus on the batch setting and use a
window size of 60 seconds due to the strong performance.

Feature Decoupling. In Table 1b, we compare our de-
coupled feature approach with prior long-term modeling
strategies where a single, pre-computed feature type is used
(e.g. [25, 31, 45, 57]). To do this, we use the same 3D CNN
for both short-term and long-term feature bank computation
and keep it fixed during training; only the parameters of the
FBO and classifier are updated. We consider two choices:
a Kinetics-400 [5] pre-trained 3D CNN (‘K400 feat.’) and
a 3D CNN that is fine-tuned on AVA (‘AVA feat.’). Our de-
coupled approach, which updates the short-term 3D CNN
based on the long-term context, works significantly better.

FBO Function Design. We next compare different FBO
function designs in Table 1c. We see that a non-local func-
tion significantly outperforms pooling on AVA. This is not
surprising, since videos in AVA (and videos in general) are
multi-actor, multi-action, and can exhibit complex interac-
tions possibly across a long range of time. We expect a more
complex function class is required for reasoning through the
complex scenes. Nonetheless, pooling still offers a clear
improvement. This again confirms the importance of long-
term context in video understanding.

FBO Input Design. What spatial granularity is required
for complex video understanding? In Table 1d, we com-
pare constructing long-term features using detected objects
(‘Detection’), regular grids (‘Grid’), and non-spatial fea-
tures (‘Global pool’). In the ‘Grid’ experiments, we divide
the feature map into a k × k grid, for k = 2, 4, and average
the features within each bin to obtain a localized represen-
tation without an object detector (similar to ACRN [43]).

Table 1d shows that the actor-level features (‘Detection’)
works better than coarser regular-grid or non-spatial fea-
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Figure 5. Example Predictions. We compare predictions made by models using LFB of different window sizes. Through LFB, the model
is able to exploit information distant in time, e.g., the zoomed-in frames in example A and C, to improve predictions. We encourage readers
to zoom in for details. (Blue: correct labels. Red: incorrect labels. Best viewed on screen.)

tures. We believe this suggests a promising future research
direction that moves from global pooling to a more detailed
modeling of objects/actors in video.
Non-Local Block Design. Next, we ablate our NL block
design. In Table 1e, we see that adding a second layer of
NL blocks leads to improved performance. In addition,
scaling [49], layer normalization [3], and dropout [41] all
contribute to good performance. Layer normalization [3],
which is part of our modified NL design, is particularly im-
portant. As found in [51], the default embedded Gaussian
variant performs similarly to dot product and concatenation.
(Later we found that adding a third layer of NL blocks fur-
ther improves accuracy, but otherwise use two by default.)
Model Complexity. Our approach uses two instances of
the backbone model: one to compute the long-term features
and another to compute the short-term features. It thus uses
around 2×more parameters and computation than our base-
lines. What if we simply use 2×more computation on base-
lines through an ensemble? We find that both ‘3D CNN’ or
‘STO’ are not able to obtain a similar gain when ensembled;
the LFB model works significantly better (Table 1f).
Example Predictions. We qualitatively present a few ex-
amples illustrating the impact of LFB in Fig. 5. Specifically,
we compare predictions made by models with LFB of dif-
ferent window sizes, from 4 seconds to 10 seconds. We see

that when observing only short-term information, the model
is confused and not able to make accurate predictions in
these cases. When observing more context, e.g., zoomed-
in frames (example A, C) or frames that give clearer cue
(example B, D), an LFB model is able to leverage the infor-
mation and improve predictions.

Backbone and Testing. So far for simplicity, we have used
a relatively small backbone of R50-I3D-NL and performed
center-crop testing. In Table 1g, we show that with an
R101-I3D-NL backbone, LFB (3L) achieves 26.8 mAP, and
with standard testing techniques, 27.7 mAP. We use short
side ∈ {224, 256, 320} pixels for 3-scale testing.

Comparison to Prior Work. Finally we compare with
other state-of-the-art methods (Table 1h). For fair compari-
son, we follow Girdhar et al. [9] and train on both the train-
ing and validation set for test set evaluation.2 For this model
we use a 1.5× longer schedule due to the larger data size.

Our model, using only RGB frames, significantly outper-
forms all prior work including strong competition winners
that use optical flow and large ensembles. Our single model
outperforms the best previous single-model entry by Gird-
har et al. [9] with a margin of 5.8 and 6.2 points mAP on
validation and test set respectively.

2Test set performance evaluated by ActivityNet server.



5. Experiments on EPIC-Kitchens
The long-term feature bank is a generalizable and flex-

ible concept. We illustrate this point on two tasks in the
EPIC-Kitchens dataset [6] for which we store different
types of information in the feature bank.

The EPIC-Kitchens dataset consists of videos of daily
activities (mostly cooking) recorded in participants’ native
kitchen environments. Segments of each video are anno-
tated with one verb (e.g., ‘squeeze’) and one noun (e.g.,
‘lemon’). The task is to predict the verb, noun, and the com-
bination (termed action [6]) in each segment. Performance
is measured by top-1 and top-5 accuracy.

The dataset consists of 39,594 segments in 432 videos.
Test set annotations are not released; for validation we split
the original training set into a new training/validation split
following Baradel et al. [4]. We train independent models
to recognize verbs and nouns, and combine their predictions
for actions. For actions, we additionally use a prior based
on the training class frequencies of verbs and nouns; see
Supplementary Material for details.

5.1. Implementation Details
Long-Term Feature Banks. Recognizing which object a
person is interacting with (the noun task) from a short seg-
ment is challenging, because the object is often occluded,
blurred, or can even be out of the scene. Our LFB is well-
suited for addressing these issues, as the long-term support-
ing information can help resolve ambiguities. For example,
if we know that the person took a lemon from the refriger-
ator 30 seconds ago, then cutting a lemon should be more
likely. Based on this motivation, we construct an LFB that
contains object-centric features. Specifically, we use Faster
R-CNN to detect objects and extract object features using
RoIAlign from the detector’s feature maps (see Supplemen-
tary Material for details of our detector).

On the other hand, for recognizing verbs we use a video
model to construct an LFB that captures motion patterns.
Specifically, we use our baseline 3D CNN fine-tuned on
EPIC-Kitchens verbs to extract clip-level features every 1
second of video. Our default setting uses a window size of
40 seconds for the verb model, and 12 seconds for the noun
model, chosen on the validation set.

Adaptation to Segment-Level Tasks. To adapt our model
for segment-level predictions, we replace the RoI pooling
by global average pooling, resulting in S ∈ R1×2048. For
the STO baseline, we use a slightly modified formulation:
STO(S′t) := FBONL(St, S

′
t), where S′t contains 16 spa-

tially pooled features, each at a temporal location, and St
is S′t pooled over the time axis. STO learns to interact
with information at different time steps within the short clip.
Training and inference procedures are analogous to our ex-
periments on AVA; see Supplementary Material for details.

Verbs Nouns Actions
top-1 top-5 top-1 top-5 top-1 top-5

Validation
Baradel [4] 40.9 - - - - -
3D CNN 49.8 80.6 26.1 51.3 19.0 37.8
3D CNN ens. 50.7 81.2 27.8 52.8 20.0 39.0
STO 51.0 80.8 26.6 51.5 19.5 38.3
STO ens. 51.9 81.2 27.8 52.5 20.5 39.4
LFB NL 51.7 81.2 29.2 55.3 21.4 40.2
LFB Avg 53.0 82.3 29.1 55.4 21.2 40.8
LFB Max 52.6 81.2 31.8 56.8 22.8 41.1

∆ +3.2 +1.7 +5.7 +5.5 +3.8 +3.3
Test s1 (seen)

TSN RGB [6] 45.7 85.6 36.8 64.2 19.9 41.9
TSN Flow [6] 42.8 79.5 17.4 39.4 9.0 21.9
TSN Fusion [6] 48.2 84.1 36.7 62.3 20.5 39.8
LFB Max 60.0 88.4 45.0 71.8 32.7 55.3

Test s2 (unseen)
TSN RGB [6] 34.9 74.6 21.8 45.3 10.1 25.3
TSN Flow [6] 40.1 73.4 14.5 33.8 6.7 18.6
TSN Fusion [6] 39.4 74.3 22.7 45.7 10.9 25.3
LFB Max 50.9 77.6 31.5 57.8 21.2 39.4

Table 2. EPIC-Kitchens validation and test server results. Aug-
menting 3D CNN with LFB leads to significant improvement.

5.2. Quantitative Evaluation

We now quantitatively evaluate our LFB models. Table 2
shows that augmenting a 3D CNN with LFB significantly
boosts the performance for all three tasks. Using object fea-
tures for the noun model is particularly effective, leading to
5.7% (26.1→ 31.8) absolute improvement over our strong
baseline model. On verb recognition, LFB with 3D CNN
features results in 3.2% (49.8 → 53.0) improvement and
outperforms previous state-of-the-art by Baradel et al. [4]
by 12.1% (40.9→ 53.0).

We also observe that FBOMax and FBOAvg outperform
FBONL on EPIC-Kitchens. We conjecture that this is due to
the simpler setting: each video has only one person, doing
one thing at a time, without the complicated person-person
interactions of AVA. Thus a simpler function suffices.

On the test set, our method outperforms prior work by
a large margin on both the ‘seen kitchens (s1)’ and ‘un-
seen kitchens (s2)’ settings. Our LFB model outperforms
the Two-Stream [39] TSN [50] baseline by 50% relatively
for s1, and almost doubles the performance for s2, in terms
of top-1 action accuracy.

6. Experiments on Charades

Finally we evaluate our approach on the Charades
dataset [38]. The Charades dataset contains 9,848 videos
with an average length of 30 seconds. In each video, a per-
son can perform one or more actions. The task is to recog-
nize all the actions in the video without localization.



iterations / lr / wd 50k / 0.0025 / 1e-4 [52] 24k / 0.02 / 1.25e-5
3D CNN 33.8 38.3
STO 37.8 39.6

Table 3. Training schedule on Charades. Our 2× shorter sched-
ule works significantly better than the schedule used in STRG [52].

backbone modality train /
val

trainval
/ test

2-Strm. [39] (from [37]) VGG16 RGB+Flow 18.6 -
Asyn-TF [37] VGG16 RGB+Flow 22.4 -
CoViAR [54] R50 Compressed 21.9 -
MultiScale TRN [58] Inception RGB 25.2 -
I3D [5] Inception-I3D RGB 32.9 34.4
I3D [5] (from [51]) R101-I3D RGB 35.5 37.2
I3D-NL [51] (from [52]) R50-I3D-NL RGB 33.5 -
I3D-NL [51] R101-I3D-NL RGB 37.5 39.5
STRG [52] R50-I3D-NL RGB 37.5 -
STRG [52] R101-I3D-NL RGB 39.7 -
3D CNN R50-I3D-NL RGB 38.3 -
3D CNN ens. R50-I3D-NL RGB 39.5 -
STO R50-I3D-NL RGB 39.6 -
STO ens. R50-I3D-NL RGB 40.0 -
LFB Avg R50-I3D-NL RGB 38.4 -
LFB Max R50-I3D-NL RGB 38.6 -
LFB NL R50-I3D-NL RGB 40.3 -
3D CNN R101-I3D-NL RGB 40.3 40.8
3D CNN ens. R101-I3D-NL RGB 41.7 -
STO R101-I3D-NL RGB 41.0 -
STO ens. R101-I3D-NL RGB 42.3 -
LFB Avg R101-I3D-NL RGB 40.8 -
LFB Max R101-I3D-NL RGB 40.9 -
LFB NL R101-I3D-NL RGB 42.5 43.4
Table 4. Action recognition accuracy on Charades. (mAP in %)

6.1. Implementation Details
We use the RGB frames at 24 FPS provided by the

dataset authors. We sample training and testing clips (32
frames) with a temporal stride of 4 following STRG [52],
resulting in input clips spanning 125 frames (∼5.2 seconds).
The LFB is sampled at 2 clips per second. We found a post-
activation version of NL′ to work better on Charades, so we
adopt it in the following experiments. Details and full re-
sults of both variants are in Supplementary Material. Other
details are identical to the verb model for EPIC-Kitchens.

Training and Inference. We train 3D CNN models for
24k iterations with a learning rate of 0.02 and weight de-
cay of 1.25e-5. Note that these hyperparameters are differ-
ent from STRG [52], which uses longer schedule (50k it-
erations), smaller learning rate (0.0025), and larger weight
decay (1e-4).3 Table 3 compares the two settings, and we
see that surprisingly our 2× shorter schedule works signif-
icantly better. With the new schedule, a simple NL model
without proposals (STO) works as well as the full STRG

3The original STRG [52] uses a batch size of 8. For clear comparison,
we use the same batch size as ours (16), but adjust the learning rate and
schedule according to ‘Linear Scaling Rule’ [13]. We verified that the
accuracy matches that of the original 4-GPU training.
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Figure 6. Relative improvement of LFB models with different
window sizes over vanilla 3D CNN.

method (37.5% mAP) [52]. We observe that the benefit of
using the short-term operator becomes smaller when using
a stronger baseline. In all following experiments we use
our 24k schedule as default, and use a 2-stage training ap-
proach similar to STRG [52] for training LFB models; see
Supplementary Material for details. At test time, we sample
10 clips per video, and combine the predictions using max
pooling following prior work [51, 52]. We use (left, center,
right) 3-crop testing following Wang et al. [51].

6.2. Quantitative Evaluation

For Charades, we experiment with both ResNet-50-I3D-
NL and ResNet-101-I3D-NL [5, 16, 51] backbones for a
consistent comparison to prior work. Table 4 shows that
LFB models again consistently outperform all models with-
out LFB, including prior state-of-the-art on both validation
and test sets. The improvement on Charades is not as large
as other datasets, in part due to the coarser prediction task
(video-level).

7. Discussion
Fig. 6 shows the relative gain of using LFB of different

window sizes.4 We see that different datasets exhibit differ-
ent characteristics. The movie dataset, AVA, benefits from
very long context lasting 2+ minutes. To recognize cooking
activities (EPIC-Kitchens), context spanning from 15 to 60
seconds is useful. Charades videos are much shorter (∼30
seconds), but still, extending the temporal support to 10+
seconds is beneficial. We conjecture that more challenging
datasets in the future may benefit even more.

In conclusion, we propose a Long-Term Feature Bank
that provides long-term supportive information to video
models. We show that enabling video models with access
to long-term information, through an LFB, leads to a large
performance gain and yields state-of-the-art results on chal-
lenging datasets like AVA, EPIC-Kitchens, and Charades.

4For each dataset, we use its best-performing FBO. Standard error
is calculated based on 5 runs. The temporal support here considers the
support of each clip used for computing L, so Charades’s support starts at
a higher value due to its larger 3D CNN clip size (∼5.2 seconds).
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