
Context Encoders: Feature Learning by Inpainting

Deepak Pathak Philipp Krähenbühl Jeff Donahue Trevor Darrell Alexei A. Efros
University of California, Berkeley

{pathak,philkr,jdonahue,trevor,efros}@cs.berkeley.edu

Abstract

We present an unsupervised visual feature learning algo-
rithm driven by context-based pixel prediction. By analogy
with auto-encoders, we propose Context Encoders – a con-
volutional neural network trained to generate the contents
of an arbitrary image region conditioned on its surround-
ings. In order to succeed at this task, context encoders
need to both understand the content of the entire image,
as well as produce a plausible hypothesis for the missing
part(s). When training context encoders, we have experi-
mented with both a standard pixel-wise reconstruction loss,
as well as a reconstruction plus an adversarial loss. The
latter produces much sharper results because it can better
handle multiple modes in the output. We found that a con-
text encoder learns a representation that captures not just
appearance but also the semantics of visual structures. We
quantitatively demonstrate the effectiveness of our learned
features for CNN pre-training on classification, detection,
and segmentation tasks. Furthermore, context encoders can
be used for semantic inpainting tasks, either stand-alone or
as initialization for non-parametric methods.

1. Introduction
Our visual world is very diverse, yet highly structured,

and humans have an uncanny ability to make sense of this
structure. In this work, we explore whether state-of-the-art
computer vision algorithms can do the same. Consider the
image shown in Figure 1a. Although the center part of the
image is missing, most of us can easily imagine its content
from the surrounding pixels, without having ever seen that
exact scene. Some of us can even draw it, as shown on Fig-
ure 1b. This ability comes from the fact that natural images,
despite their diversity, are highly structured (e.g. the regular
pattern of windows on the facade). We humans are able to
understand this structure and make visual predictions even
when seeing only parts of the scene. In this paper, we show

The supplementary material, trained models and code are available at
the author’s website.

(a) Input context (b) Human artist

(c) Context Encoder
(L2 loss)

(d) Context Encoder
(L2 + Adversarial loss)

Figure 1: Qualitative illustration of the task. Given an im-
age with a missing region (a), a human artist has no trouble
inpainting it (b). Automatic inpainting using our context
encoder trained with L2 reconstruction loss is shown in (c),
and using both L2 and adversarial losses in (d).

that it is possible to learn and predict this structure using
convolutional neural networks (CNNs), a class of models
that have recently shown success across a variety of image
understanding tasks.

Given an image with a missing region (e.g., Fig. 1a), we
train a convolutional neural network to regress to the miss-
ing pixel values (Fig. 1d). We call our model context en-
coder, as it consists of an encoder capturing the context of
an image into a compact latent feature representation and a
decoder which uses that representation to produce the miss-
ing image content. The context encoder is closely related to
autoencoders [3, 20], as it shares a similar encoder-decoder
architecture. Autoencoders take an input image and try

1



to reconstruct it after it passes through a low-dimensional
“bottleneck” layer, with the aim of obtaining a compact fea-
ture representation of the scene. Unfortunately, this feature
representation is likely to just compresses the image content
without learning a semantically meaningful representation.
Denoising autoencoders [38] address this issue by corrupt-
ing the input image and requiring the network to undo the
damage. However, this corruption process is typically very
localized and low-level, and does not require much seman-
tic information to undo. In contrast, our context encoder
needs to solve a much harder task: to fill in large missing
areas of the image, where it can’t get “hints” from nearby
pixels. This requires a much deeper semantic understanding
of the scene, and the ability to synthesize high-level features
over large spatial extents. For example, in Figure 1a, an en-
tire window needs to be conjured up “out of thin air.” This
is similar in spirit to word2vec [30] which learns word rep-
resentation from natural language sentences by predicting a
word given its context.

Like autoencoders, context encoders are trained in a
completely unsupervised manner. Our results demonstrate
that in order to succeed at this task, a model needs to both
understand the content of an image, as well as produce a
plausible hypothesis for the missing parts. This task, how-
ever, is inherently multi-modal as there are multiple ways
to fill the missing region while also maintaining coherence
with the given context. We decouple this burden in our loss
function by jointly training our context encoders to mini-
mize both a reconstruction loss and an adversarial loss. The
reconstruction (L2) loss captures the overall structure of the
missing region in relation to the context, while the the ad-
versarial loss [16] has the effect of picking a particular mode
from the distribution. Figure 1 shows that using only the re-
construction loss produces blurry results, whereas adding
the adversarial loss results in much sharper predictions.

We evaluate the encoder and the decoder independently.
On the encoder side, we show that encoding just the con-
text of an image patch and using the resulting feature to
retrieve nearest neighbor contexts from a dataset produces
patches which are semantically similar to the original (un-
seen) patch. We further validate the quality of the learned
feature representation by fine-tuning the encoder for a va-
riety of image understanding tasks, including classifica-
tion, object detection, and semantic segmentation. We
are competitive with the state-of-the-art unsupervised/self-
supervised methods on those tasks. On the decoder side, we
show that our method is often able to fill in realistic image
content. Indeed, to the best of our knowledge, ours is the
first parametric inpainting algorithm that is able to give rea-
sonable results for semantic hole-filling (i.e. large missing
regions). The context encoder can also be useful as a bet-
ter visual feature for computing nearest neighbors in non-
parametric inpainting methods.

2. Related work

Computer vision has made tremendous progress on se-
mantic image understanding tasks such as classification, ob-
ject detection, and segmentation in the past decade. Re-
cently, Convolutional Neural Networks (CNNs) [13, 27]
have greatly advanced the performance in these tasks [15,
26,28]. The success of such models on image classification
paved the way to tackle harder problems, including unsu-
pervised understanding and generation of natural images.
We briefly review the related work in each of the sub-fields
pertaining to this paper.

Unsupervised learning CNNs trained for ImageNet [37]
classification with over a million labeled examples learn
features which generalize very well across tasks [9]. How-
ever, whether such semantically informative and gener-
alizable features can be learned from raw images alone,
without any labels, remains an open question. Some of
the earliest work in deep unsupervised learning are au-
toencoders [3, 20]. Along similar lines, denoising autoen-
coders [38] reconstruct the image from local corruptions, to
make encoding robust to such corruptions. While context
encoders could be thought of as a variant of denoising au-
toencoders, the corruption applied to the model’s input is
spatially much larger, requiring more semantic information
to undo.

Weakly-supervised and self-supervised learning Very
recently, there has been significant interest in learning
meaningful representations using weakly-supervised and
self-supervised learning. One useful source of supervision
is to use the temporal information contained in videos. Con-
sistency across temporal frames has been used as supervi-
sion to learn embeddings which perform well on a num-
ber of tasks [17, 34]. Another way to use consistency is to
track patches in frames of video containing task-relevant at-
tributes and use the coherence of tracked patches to guide
the training [39]. Ego-motion read off from non-vision sen-
sors has been used as supervisory signal to train visual fea-
tures et al. [1, 21].

Most closely related to the present paper are efforts at
exploiting spatial context as a source of free and plentiful
supervisory signal. Visual Memex [29] used context to non-
parametrically model object relations and to predict masked
objects in scenes, while [6] used context to establish cor-
respondences for unsupervised object discovery. However,
both approaches relied on hand-designed features and did
not perform any representation learning. Recently, Doer-
sch et al. [7] used the task of predicting the relative positions
of neighboring patches within an image as a way to train
an unsupervised deep feature representations. We share the
same high-level goals with Doersch et al. but fundamentally



differ in the approach: whereas [7] are solving a discrimina-
tive task (is patch A above patch B or below?), our context
encoder solves a pure prediction problem (what pixel inten-
sities should go in the hole?). Interestingly, similar distinc-
tion exist in using language context to learn word embed-
dings: Collobert and Weston [5] advocate a discriminative
approach, whereas word2vec [30] formulate it as word pre-
diction. One important benefit of our approach is that our
supervisory signal is much richer: a context encoder needs
to predict roughly 15,000 real values per training example,
compared to just 1 option among 8 choices in [7]. Likely
due in part to this difference, our context encoders take far
less time to train than [7]. Moreover, context based predic-
tion is also harder to “cheat” since low-level image features,
such as chromatic aberration, do not provide any meaning-
ful information, in contrast to [7] where chromatic aberra-
tion partially solves the task. On the other hand, it is not yet
clear if requiring faithful pixel generation is necessary for
learning good visual features.

Image generation Generative models of natural images
have enjoyed significant research interest [16, 24, 35]. Re-
cently, Radford et al. [33] proposed new convolutional ar-
chitectures and optimization hyperparameters for Genera-
tive Adversarial Networks (GAN) [16] producing encour-
aging results. We train our context encoders using an ad-
versary jointly with reconstruction loss for generating in-
painting results. We discuss this in detail in Section 3.2.

Dosovitskiy et al. [10] and Rifai et al. [36] demonstrate
that CNNs can learn to generate novel images of particular
object categories (chairs and faces, respectively), but rely on
large labeled datasets with examples of these categories. In
contrast, context encoders can be applied to any unlabeled
image database and learn to generate images based on the
surrounding context.

Inpainting and hole-filling It is important to point out
that our hole-filling task cannot be handled by classical in-
painting [4, 32] or texture synthesis [2, 11] approaches,
since the missing region is too large for local non-semantic
methods to work well. In computer graphics, filling in large
holes is typically done via scene completion [19], involv-
ing a cut-paste formulation using nearest neighbors from a
dataset of millions of images. However, scene completion
is meant for filling in holes left by removing whole objects,
and it struggles to fill arbitrary holes, e.g. amodal comple-
tion of partially occluded objects. Furthermore, previous
completion relies on a hand-crafted distance metric, such as
Gist [31] for nearest-neighbor computation which is infe-
rior to a learned distance metric. We show that our method
is often able to inpaint semantically meaningful content in
a parametric fashion, as well as provide a better feature for
nearest neighbor-based inpainting methods.

Figure 2: Context Encoder. The context image is passed
through the encoder to obtain features which are connected
to the decoder using channel-wise fully-connected layer as
described in Section 3.1. The decoder then produces the
missing regions in the image.

3. Context encoders for image generation
We now introduce context encoders: CNNs that predict

missing parts of a scene from their surroundings. We first
give an overview of the general architecture, then provide
details on the learning procedure and finally present various
strategies for image region removal.

3.1. Encoder-decoder pipeline

The overall architecture is a simple encoder-decoder
pipeline. The encoder takes an input image with missing
regions and produces a latent feature representation of that
image. The decoder takes this feature representation and
produces the missing image content. We found it important
to connect the encoder and the decoder through a channel-
wise fully-connected layer, which allows each unit in the
decoder to reason about the entire image content. Figure 2
shows an overview of our architecture.

Encoder Our encoder is derived from the AlexNet archi-
tecture [26]. Given an input image of size 227×227, we use
the first five convolutional layers and the following pooling
layer (called pool5) to compute an abstract 6 × 6 × 256
dimensional feature representation. In contrast to AlexNet,
our model is not trained for ImageNet classification; rather,
the network is trained for context prediction “from scratch”
with randomly initialized weights.

However, if the encoder architecture is limited only to
convolutional layers, there is no way for information to di-
rectly propagate from one corner of the feature map to an-
other. This is so because convolutional layers connect all
the feature maps together, but never directly connect all lo-
cations within a specific feature map. In the present archi-
tectures, this information propagation is handled by fully-
connected or inner product layers, where all the activations
are directly connected to each other. In our architecture, the
latent feature dimension is 6 × 6 × 256 = 9216 for both
encoder and decoder. This is so because, unlike autoen-



coders, we do not reconstruct the original input and hence
need not have a smaller bottleneck. However, fully connect-
ing the encoder and decoder would result in an explosion in
the number of parameters (over 100M!), to the extent that
efficient training on current GPUs would be difficult. To
alleviate this issue, we use a channel-wise fully-connected
layer to connect the encoder features to the decoder, de-
scribed in detail below.

Channel-wise fully-connected layer This layer is essen-
tially a fully-connected layer with groups, intended to prop-
agate information within activations of each feature map. If
the input layer has m feature maps of size n× n, this layer
will output m feature maps of dimension n × n. However,
unlike a fully-connected layer, it has no parameters connect-
ing different feature maps and only propagates information
within feature maps. Thus, the number of parameters in
this channel-wise fully-connected layer is mn4, compared
tom2n4 parameters in a fully-connected layer (ignoring the
bias term). This is followed by a stride 1 convolution to
propagate information across channels.

Decoder We now discuss the second half of our pipeline,
the decoder, which generates pixels of the image using
the encoder features. The “encoder features” are con-
nected to the “decoder features” using a channel-wise fully-
connected layer.

The channel-wise fully-connected layer is followed by
a series of five up-convolutional layers [10, 28, 40] with
learned filters, each with a rectified linear unit (ReLU) acti-
vation function. A up-convolutional is simply a convolution
that results in a higher resolution image. It can be under-
stood as upsampling followed by convolution (as described
in [10]), or convolution with fractional stride (as described
in [28]). The intuition behind this is straightforward – the
series of up-convolutions and non-linearities comprises a
non-linear weighted upsampling of the feature produced by
the encoder until we roughly reach the original target size.

3.2. Loss function

We train our context encoders by regressing to the
ground truth content of the missing (dropped out) region.
However, there are often multiple equally plausible ways to
fill a missing image region which are consistent with the
context. We model this behavior by having a decoupled
joint loss function to handle both continuity within the con-
text and multiple modes in the output. The reconstruction
(L2) loss is responsible for capturing the overall structure of
the missing region and coherence with regards to its context,
but tends to average together the multiple modes in predic-
tions. The adversarial loss [16], on the other hand, tries
to make prediction look real, and has the effect of picking a
particular mode from the distribution. For each ground truth

(a) Central region (b) Random block (c) Random region

Figure 3: An example of image x with our different region
masks M̂ applied, as described in Section 3.3.

image x, our context encoder F produces an output F (x).
Let M̂ be a binary mask corresponding to the dropped im-
age region with a value of 1 wherever a pixel was dropped
and 0 for input pixels. During training, those masks are au-
tomatically generated for each image and training iterations,
as described in Section 3.3. We now describe different com-
ponents of our loss function.

Reconstruction Loss We use a normalized masked L2
distance as our reconstruction loss function, Lrec,

Lrec(x) = ‖M̂ � (x− F ((1− M̂)� x))‖22, (1)

where � is the element-wise product operation. We experi-
mented with both L1 and L2 losses and found no significant
difference between them. While this simple loss encour-
ages the decoder to produce a rough outline of the predicted
object, it often fails to capture any high frequency detail
(see Fig. 1c). This stems from the fact that the L2 (or L1)
loss often prefer a blurry solution, over highly accurate tex-
tures. We believe this happens because it is much “safer”
for the L2 loss to predict the mean of the distribution, be-
cause this minimizes the mean pixel-wise error, but results
in a blurry averaged image. We alleviated this problem by
adding an adversarial loss.

Adversarial Loss Our adversarial loss is based on Gener-
ative Adversarial Networks (GAN) [16]. To learn a genera-
tive modelG of a data distribution, GAN proposes to jointly
learn an adversarial discriminative model D to provide loss
gradients to the generative model. G and D are paramet-
ric functions (e.g., deep networks) where G : Z → X
maps samples from noise distribution Z to data distribution
X . The learning procedure is a two-player game where an
adversarial discriminator D takes in both the prediction of
G and ground truth samples, and tries to distinguish them,
while G tries to confuse D by producing samples that ap-
pear as “real” as possible. The objective for discriminator is
logistic likelihood indicating whether the input is real sam-



Figure 4: Semantic Inpainting results on held-out images for context encoder trained using reconstruction and adversarial
loss. First four rows contain examples from Paris StreetView Dataset, and bottom row contains examples from ImageNet.

ple or predicted one:

min
G

max
D

Ex∈X [log(D(x))] + Ez∈Z [log(1−D(G(z)))]

This method has recently shown encouraging results in
generative modeling of images [33]. We thus adapt this
framework for context prediction by modeling generator by
context encoder; i.e., G , F . To customize GANs for this
task, one could condition on the given context information;
i.e., the mask M̂ � x. However, conditional GANs don’t
train easily for context prediction task as the adversarial dis-
criminator D easily exploits the perceptual discontinuity in
generated regions and the original context to easily classify
predicted versus real samples. We thus use an alternate for-
mulation, by conditioning only the generator (not the dis-
criminator) on context. We also found results improved
when the generator was not conditioned on a noise vector.
Hence the adversarial loss for context encoders, Ladv , is

Ladv =max
D

Ex∈X [log(D(x))

+ log(1−D(F ((1− M̂)� x)))], (2)

where, in practice, both F and D are optimized jointly us-
ing alternating SGD. Note that this objective encourages the

entire output of the context encoder to look realistic, not just
the missing regions as in Equation (1).

Joint Loss We define the overall loss function as

L = λrecLrec + λadvLadv. (3)

Currently, we use adversarial loss only for inpainting exper-
iments as AlexNet [26] architecture training diverged with
joint adversarial loss. Details follow in Sections 5.1, 5.2.

3.3. Region masks

The input to a context encoder is an image with one or
more of its regions “dropped out”; i.e., set to zero, assuming
zero-centered inputs. The removed regions could be of any
shape, we present three different strategies here:

Central region The simplest such shape is the central
square patch in the image, as shown in Figure 3a. While this
works quite well for inpainting, the network learns low level
image features that latch onto the boundary of the central
mask. Those low level image features tend not to generalize
well to images without masks, hence the features learned
are not very general.



Input Context Context Encoder Content-Aware Fill

Figure 5: Comparison with Content-Aware Fill (Photoshop
feature based on [2]) on held-out images. Our method
works better in semantic cases (top row) and works slightly
worse in textured settings (bottom row).

Random block To prevent the network from latching on
the the constant boundary of the masked region, we ran-
domize the masking process. Instead of choosing a sin-
gle large mask at a fixed location, we remove a number of
smaller possibly overlapping masks, covering up to 1

4 of the
image. An example of this is shown in Figure 3b. How-
ever, the random block masking still has sharp boundaries
convolutional features could latch onto.

Random region To completely remove those bound-
aries, we experimented with removing arbitrary shapes
from images, obtained from random masks in the PASCAL
VOC 2012 dataset [12]. We deform those shapes and paste
in arbitrary places in the other images (not from PASCAL),
again covering up to 1

4 of the image. Note that we com-
pletely randomize the region masking process, and do not
expect or want any correlation between the source segmen-
tation mask and the image. We merely use those regions to
prevent the network from learning low-level features corre-
sponding to the removed mask. See example in Figure 3c.

In practice, we found region and random block masks
produce a similarly general feature, while significantly out-
performing the central region features. We use the random
region dropout for all our feature based experiments.

4. Implementation details
The pipeline was implemented in Caffe [22] and Torch.

We used the recently proposed stochastic gradient descent
solver, ADAM [23] for optimization. The missing region in
the masked input image is filled with constant mean value.
Hyper-parameter details are discussed in Sections 5.1, 5.2.

Pool-free encoders We experimented with replacing all
pooling layers with convolutions of the same kernel size
and stride. The overall stride of the network remains the
same, but it results in finer inpainting. Intuitively, there is
no reason to use pooling for reconstruction based networks.

Method Mean L1 Loss Mean L2 Loss PSNR (higher better)

NN-inpainting (HOG features) 19.92% 6.92% 12.79 dB

NN-inpainting (our features) 15.10% 4.30% 14.70 dB
Our Reconstruction (joint) 10.33% 2.35% 17.59 dB

Table 1: Semantic Inpainting accuracy for Paris StreetView
dataset on held-out images. NN inpainting is basis for [19].

In classification, pooling provides spatial invariance, which
may be detrimental for reconstruction-based training. To be
consistent with prior work, we still use the original AlexNet
architecture (with pooling) for all feature learning results.

5. Evaluation

We now evaluate the encoder features for their seman-
tic quality and transferability to other image understanding
tasks. We experiment with images from two datasets: Paris
StreetView [8] and ImageNet [37] without using any of the
accompanying labels. In Section 5.1, we present visualiza-
tions demonstrating the ability of the context encoder to fill
in semantic details of images with missing regions. In Sec-
tion 5.2, we demonstrate the transferability of our learned
features to other tasks, using context encoders as a pre-
training step for image classification, object detection, and
semantic segmentation. We compare our results on these
tasks with those of other unsupervised or self-supervised
methods, demonstrating that our approach outperforms pre-
vious methods.

5.1. Semantic Inpainting

We train context encoders with the joint loss function de-
fined in Equation (3) for the task of inpainting the missing
region. The encoder and discriminator architecture is simi-
lar to that of discriminator in [33], and decoder is similar to
generator in [33]. However, the bottleneck is of 4000 units
(in contrast to 100 in [33]); see supplementary material. We
used the default solver hyper-parameters suggested in [33].
We use λrec = 0.999 and λadv = 0.001. However, a few
things were crucial for training the model. We did not con-
dition the adversarial loss (see Section 3.2) nor did we add
noise to the encoder. We use a higher learning rate for con-
text encoder (10 times) to that of adversarial discriminator.
To further emphasize the consistency of prediction with the
context, we predict a slightly larger patch that overlaps with
the context (by 7px). During training, we use higher weight
(10×) for the reconstruction loss in this overlapping region.

The qualitative results are shown in Figure 4. Our model
performs generally well in inpainting semantic regions of
an image. However, if a region can be filled with low-
level textures, texture synthesis methods, such as [2, 11],
can often perform better (e.g. Figure 5). For semantic in-
painting, we compare against nearest neighbor inpainting
(which forms the basis of Hays et al. [19]) and show that



Image Ours(L2) Ours(Adv) Ours(L2+Adv) NN-Inpainting w/ our features NN-Inpainting w/ HOG

Figure 6: Semantic Inpainting using different methods on held-out images. Context Encoder with just L2 are well aligned,
but not sharp. Using adversarial loss, results are sharp but not coherent. Joint loss alleviate the weaknesses of each of them.
The last two columns are the results if we plug-in the best nearest neighbor (NN) patch in the masked region.

our reconstructions are well-aligned semantically, as seen
on Figure 6. It also shows that joint loss significantly im-
proves the inpainting over both reconstruction and adver-
sarial loss alone. Moreover, using our learned features in
a nearest-neighbor style inpainting can sometimes improve
results over a hand-designed distance metrics. Table 1 re-
ports quantitative results on StreetView Dataset.

5.2. Feature Learning

For consistency with prior work, we use the
AlexNet [26] architecture for our encoder. Unfortu-
nately, we did not manage to make the adversarial loss
converge with AlexNet, so we used just the reconstruction
loss. The networks were trained with a constant learning
rate of 10−3 for the center-region masks. However, for
random region corruption, we found a learning rate of 10−4

to perform better. We apply dropout with a rate of 0.5 just
for the channel-wise fully connected layer, since it has
more parameters than other layers and might be prone to
overfitting. The training process is fast and converges in
about 100K iterations: 14 hours on a Titan X GPU. Figure 7
shows inpainting results for context encoder trained with
random region corruption using reconstruction loss. To
evaluate the quality of features, we find nearest neighbors

Figure 7: Arbitrary region inpainting for context encoder
trained with reconstruction loss on held-out images.

to the masked part of image just by using the features from
the context, see Figure 8. Note that none of the methods
ever see the center part of any image, whether a query
or dataset image. Our features retrieve decent nearest
neighbors just from context, even though actual prediction
is blurry with L2 loss. AlexNet features also perform
decently as they were trained with 1M labels for semantic
tasks, HOG on the other hand fail to get the semantics.

5.2.1 Classification pre-training

For this experiment, we fine-tune a standard AlexNet clas-
sifier on the PASCAL VOC 2007 [12] from a number of su-
pervised, self-supervised and unsupervised initializations.
We train the classifier using random cropping, and then
evaluate it using 10 random crops per test image. We av-
erage the classifier output over those random crops. Table 2
shows the standard mean average precision (mAP) score for
all compared methods.

A random initialization performs roughly 25% below
an ImageNet-trained model; however, it does not use any
labels. Context encoders are competitive with concurrent
self-supervised feature learning methods [7, 39] and signif-
icantly outperform autoencoders and Agrawal et al. [1].

5.2.2 Detection pre-training

Our second set of quantitative results involves using our
features for object detection. We use Fast R-CNN [14]
framework (FRCN). We replace the ImageNet pre-trained
network with our context encoders (or any other baseline
model). In particular, we take the pre-trained encoder
weights up to the pool5 layer and re-initialize the fully-



O
ur

s

O
ur

s

H
O

G

H
O

G

A
le

xN
et

A
le

xN
et

Figure 8: Context Nearest Neighbors. Center patches whose context (not shown here) are close in the embedding space
of different methods (namely our context encoder, HOG and AlexNet). Note that the appearance of these center patches
themselves was never seen by these methods. But our method brings them close just from their context.

Pretraining Method Supervision Pretraining time Classification Detection Segmentation

ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%

Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Doersch et al. [7] context 4 weeks 55.3% 46.6% -
Wang et al. [39] motion 1 week 58.4% 44.0% -

Ours context 14 hours 56.5% 44.5% 29.7%

Table 2: Quantitative comparison for classification, detection and semantic segmentation. Classification and Fast-RCNN
Detection results are on the PASCAL VOC 2007 test set. Semantic segmentation results are on the PASCAL VOC 2012
validation set from the FCN evaluation described in Section 5.2.3, using the additional training data from [18], and removing
overlapping images from the validation set [28].

connected layers. We then follow the training and evalu-
ation procedures from FRCN and report the accuracy (in
mAP) of the resulting detector.

Our results on the test set of the PASCAL VOC 2007 [12]
detection challenge are reported in Table 2. Context en-
coder pre-training is competitive with the existing meth-
ods achieving significant boost over the baseline. Recently,
Krähenbühl et al. [25] proposed a data-dependent method
for rescaling pre-trained model weights. This significantly
improves the features in Doersch et al. [7] up to 65.3%
for classification and 51.1% for detection. However, this
rescaling doesn’t improve results for other methods, includ-
ing ours.

5.2.3 Semantic Segmentation pre-training

Our last quantitative evaluation explores the utility of con-
text encoder training for pixel-wise semantic segmentation.
Fully convolutional networks [28] (FCNs) were proposed as
an end-to-end learnable method of predicting a semantic la-
bel at each pixel of an image, using a convolutional network
pre-trained for ImageNet classification. We replace the clas-
sification pre-trained network used in the FCN method with

our context encoders, afterwards following the FCN train-
ing and evaluation procedure for direct comparison with
their original CaffeNet-based result.

Our results on the PASCAL VOC 2012 [12] validation
set are reported in Table 2. In this setting, we outperform a
randomly initialized network as well as a plain autoencoder
which is trained simply to reconstruct its full input.

6. Conclusion
Our context encoders trained to generate images condi-

tioned on context advance the state of the art in semantic
inpainting, at the same time learn feature representations
that are competitive with other models trained with auxil-
iary supervision.

Acknowledgements The authors would like to thank
Amanda Buster for the artwork on Fig. 1b, as well as Shub-
ham Tulsiani and Saurabh Gupta for helpful discussions.
This work was supported in part by DARPA, AFRL, In-
tel, DoD MURI award N000141110688, NSF awards IIS-
1212798, IIS-1427425, and IIS-1536003, the Berkeley Vi-
sion and Learning Center and Berkeley Deep Drive.



References
[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. ICCV, 2015. 2, 7, 8
[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: A randomized correspondence algorithm for
structural image editing. ACM Transactions on Graphics,
2009. 3, 6

[3] Y. Bengio. Learning deep architectures for ai. Foundations
and trends in Machine Learning, 2009. 1, 2

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In Computer graphics and interactive techniques,
2000. 3

[5] R. Collobert and J. Weston. A unified architecture for natural
language processing: Deep neural networks with multitask
learning. In ICML, 2008. 3

[6] C. Doersch, A. Gupta, and A. A. Efros. Context as supervi-
sory signal: Discovering objects with predictable context. In
ECCV, 2014. 2

[7] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual
representation learning by context prediction. ICCV, 2015.
2, 3, 7, 8

[8] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What
makes paris look like paris? ACM Transactions on Graphics,
2012. 6

[9] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional ac-
tivation feature for generic visual recognition. ICML, 2014.
2

[10] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to
generate chairs with convolutional neural networks. CVPR,
2015. 3, 4

[11] A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In ICCV, 1999. 3, 6

[12] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams,
J. Winn, and A. Zisserman. The Pascal Visual Object Classes
challenge: A retrospective. IJCV, 2014. 6, 7, 8

[13] K. Fukushima. Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaf-
fected by shift in position. Biological cybernetics, 1980. 2

[14] R. Girshick. Fast r-cnn. ICCV, 2015. 7
[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 2

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, 2014. 2, 3, 4

[17] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun.
Unsupervised learning of spatiotemporally coherent metrics.
ICCV, 2015. 2

[18] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In ICCV, 2011. 8

[19] J. Hays and A. A. Efros. Scene completion using millions of
photographs. SIGGRAPH, 2007. 3, 6

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 2006. 1,
2

[21] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to ego-motion. In ICCV, 2015. 2

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.
Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In ACM Mul-
timedia, 2014. 6

[23] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015. 6

[24] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. ICLR, 2014. 3

[25] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-
dependent initializations of convolutional neural networks.
ICLR, 2016. 8

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, 2012. 2, 3, 5, 7, 8, 10

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1989. 2

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 2, 4, 8

[29] T. Malisiewicz and A. Efros. Beyond categories: The visual
memex model for reasoning about object relationships. In
NIPS, 2009. 2

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, 2013. 2, 3

[31] A. Oliva and A. Torralba. Building the gist of a scene: The
role of global image features in recognition. Progress in
brain research, 2006. 3

[32] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An it-
erative regularization method for total variation-based image
restoration. Multiscale Modeling & Simulation, 2005. 3

[33] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. ICLR, 2016. 3, 5, 6, 10

[34] V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei. Learn-
ing temporal embeddings for complex video analysis. ICCV,
2015. 2

[35] M. Ranzato, V. Mnih, J. M. Susskind, and G. E. Hinton.
Modeling natural images using gated mrfs. PAMI, 2013. 3

[36] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza.
Disentangling factors of variation for facial expression
recognition. In ECCV, 2012. 3

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. IJCV, 2015. 2, 6

[38] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML, 2008. 2

[39] X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. ICCV, 2015. 2, 7, 8

[40] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, 2014. 4



Supplementary Material
In this section, we present the architectural details of our

context-encoders, and show additional qualitative results.
Context encoders are not only able to inpaint semantic de-
tails in the missing part of an input image, but also learn
features transferable to other tasks. We discuss the imple-
mentation details for each of these in following sections.

A. Semantic Inpainting

Context encoders for inpainting are trained jointly with
reconstruction and adversarial loss as discussed in Sec-
tion 5.1. The inpainting results are slightly worse if we use
227 × 227 directly. So, we resize images to 128 × 128
and then train our joint loss with the resized images. The
encoder and discriminator architecture is similar to that of
discriminator in [33], and decoder is similar to generator
in [33]; the bottleneck is of 4000 units. We used batch
normalization in both context encoder and discriminator.
ReLU [26] non-linearity is used in decoder, while leaky
ReLU [33] is used in both encoder and discriminator.

In case of arbitrary region inpainting, adversarial dis-
criminator compares the full real image and the full gen-
erated image. We do not condition the adversarial discrimi-
nator with mask, see (2). If the discriminator sees the mask,
it figures out the perceptual discontinuity of generated part
from the real part and easily classifies the real v/s the gen-
erated image, i.e., the process doesn’t train. Moreover, par-
ticularly for center region inpainting, this process can be
computationally simplified by producing center only and
not showing discriminator the context boundary (or in other
words, not showing the mask). The exact architecture for
center region dropout is shown in Figure 9a.

B. Feature Learning

We use the AlexNet [26] architecture for encoder so that
we can compare the learned features with the prior works,
which are trained using Imagenet labels and other un/self-
supervised techniques. The encoder is Alexnet until pool5,
followed by channel-wise fully connected layer and decoder
is a series of upconvolutional layers until we reach the tar-
get size. The input image size is 227× 227. Unfortunately,
we couldn’t train adversary with Alexnet Encoder, so it is
trained with reconstruction loss. See Figure 9b for exact
architecture details. For pre-training experiments in Sec-
tion 5.2, we randomly initialize the fully-connected lay-
ers, i.e., fc6 and fc7, while starting from context encoder
weights.

C. Additional Results

Finally, we show additional inpainting results using our
context-encoders in Figure 10. These results, in compari-
son to nearest-neighbor inpainting, show that: (a) The fea-

tures learned by context-encoder are semantically meaning-
ful and retrieve neighboring patches just by looking at the
context. This is also verified quantitatively in Table 2. (b)
Our context encoder doesn’t memorize the examples from
training set. It rather produces realistic and coherent in-
painting results which are much better than nearest neighbor
inpainting both qualitatively (Figure 10) and quantitatively
(Table 1).



Reconstruc*on		
Loss	(L2)	

64	

64	

64	

32	

32	 64	
128	

256	 512	

16	 8	 4	

8	 4	

4000	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

512	

4	

4	

		4x4		
(uconv)	

256	

8	

8	

		4x4		
(uconv)	

128	

16	

		4x4		
(uconv)	

32	

32	

		4x4		
(uconv)	

		4x4		
(uconv)	

64	

64	

64	

		4x4		
(conv)	

16	16	

32	

32	 64	
128	

256	 512	

16	 8	 4	

8	 4	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

		4x4		
(conv)	

16	

64	

64	

128	

128	

real		
or		
fake	

Encoder	 Decoder	

Adversarial	Discriminator	

(a) Context encoder trained with joint reconstruction and adversarial loss for semantic inpainting. This illustration is shown for center region dropout.
Similar architecture holds for arbitrary region dropout as well. See Section 3.2.

Reconstruc*on		
Loss	(L2)	

9216	

256	

6	

6	

(reshape)	

128	

11	

11	

		5x5	
(uconv)	

64	

21	

		5x5		
(uconv)	

41	

41	

		5x5		
(uconv)	

		5x5		
(uconv)	

32	

21	

227	

227	

Encoder	 Decoder	

					AlexNet		
(un*l	pool5)	

64	

81	

81	

		5x5		
(uconv)	

3	
161	

161	 227	

227	

9216	

(resize)	

Channel-wise	
Fully		

Connected	

(b) Context encoder trained with reconstruction loss for feature learning by filling in arbitrary region dropouts in the input.

Figure 9: Context encoder training architectures.



Image Ours(L2) Ours(Adv) Ours(L2+Adv) NN-Inpainting w/ our features NN-Inpainting w/ HOG

Figure 10: Semantic Inpainting using different methods on held-out images. Context Encoder with just L2 are well aligned,
but not sharp. Using adversarial loss, results are sharp but not coherent. Joint loss alleviate the weaknesses of each of them.
The last two columns are the results if we plug-in the best nearest neighbor (NN) patch in the masked region.


