# CS342 - NEURAL NETWORKS

Philipp Krähenbühl

#### OVERVIEW

Philipp Krähenbühl office hours T 11-12 GDC 4.824

**TA** Dian Chen office hours M 11-12 GDC 1.302

**TA** Ankur Garg office hours M 4-5 GDC 1.302

Try canvas first!

#### www.philkr.net/ cs342/

### OVERVIEW



Т

Th

Fr

### IN CLASS

- Learn background material
  - "Theory"
  - Math behind deep learning



# SECTION

- Coding
  - PyTorch
  - Start homework



# IN CLASS QUIZZES

- In average one per week (~|3 in total)
- Can work in groups
- Can fail 2, at least 5 required
- Ways to fail
  - Do not show up
  - Hand in an empty quiz
  - Write a purposefully wrong answer



# ASSIGNMENTS

- One homework per week
  - Out Thursday night (or Friday morning)
  - due nextTh 11:59pm
  - Submit a pytorch module
  - Automatically graded
    - partial grader with assignment



### ASSIGNMENTS



# FINAL PROJECT

- Learn to race in SuperTuxKart
  - Last 3 weeks
  - open ended strategy
- Competition in class



### PREREQUISITES

- 311 or 311H Discrete math for computer science (or equivalent)
- 343 or 363D Artificial Intelligence or Statistical Learning and Data Mining
- Proficiency in Python

### GOALS

- Implement and train neural networks in pytorch
- Have a basic understanding of the inner workings of neural networks
- Know several types of neural networks, including convolutional and recurrent neural networks

### GRADES

- 10% Quizzes
- 55% homework
- 35% final project
- I day late: -25%
- 2 days late: -50%
- 3+ days late: -100%



- No official book
- For background reading:
  - Deep learning, Goodfellow, Bengio and Courville
    2016
  - www.deeplearningbook.org

### WIKI / DOC

 The webpage as a little writeup for all important concepts you'll learn in class

| Concepts                                     |
|----------------------------------------------|
| tensors layers                               |
|                                              |
| fully connected ReLU                         |
| sigmoid softmax log likelihood<br>L1/L2 loss |

### ONCE UPON ATIME

### 1950s



### PERCEPTRON

Frank Rosenblatt [1957]





# HISTORY OF DEEP LEARNING

Hubel & Wiesel [early 1950s]



### MULTI-LAYER PERCEPTRON



### MULTI-LAYER PERCEPTRON



### MULTI-LAYER PERCEPTRON



# MARVIN MINSKY [1968]



symbolic Al rule based systems

#### Al winter [1970s]



# BACK-PROPAGATION [1988]



# MACHINE LEARNING + OPTIMIZATION [1990 - 2005]

Random Forests

Suport Vector Machines

Boosting

Hand engineering

Computer Vision: Geometry



### REVIEW

doi:10.1038/nature14539

#### **Deep learning**

Yann LeCun<sup>1,2</sup>, Yoshua Bengio<sup>3</sup> & Geoffrey Hinton<sup>4,5</sup>











2006

2016

### 30 days of



### x days of





### 30 days of







### 30 days of







### THE N-WORD

- Neural
  - Deep Learning
  - try to keep Neuroscience out of this class
  - try to motivate through optimization and ML
    - instead of biology



# HISTORY LESSON OVER

# WHAT IS A DEEP NETWORK?

A "differentiable" function composed out of multiple layers of computation



### TENSORS

- A tensor is a d-dimensional array
  - A I-d tensor is a vector
  - A 2-d tensor is a matrix

• Tensors are inputs and outputs of layers, as well as their parameters



### LAYER

- Basic unit of computation
- Simple function
  - With parameters

# WHY DO DEEP NETWORKS WORK SO WELL IN PRACTICE?







training set



test set

linear classifier

logistic regression



training logistic regression



# PREPARATION FOR SECTION

- Windows I0
  - install bash (ubuntu within windows)
- Install python3, pip
- Install pytorch, torchvision
- Bring your laptop to section!