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Abstract. We present an approach for identifying a set of candidate
objects in a given image. This set of candidates can be used for object
recognition, segmentation, and other object-based image parsing tasks.
To generate the proposals, we identify critical level sets in geodesic dis-
tance transforms computed for seeds placed in the image. The seeds
are placed by specially trained classifiers that are optimized to discover
objects. Experiments demonstrate that the presented approach achieves
significantly higher accuracy than alternative approaches, at a fraction
of the computational cost.
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1 Introduction

Many image parsing pipelines use sliding windows to extract densely overlapping
bounding boxes that are then analyzed [7,11,22]. This approach has well-known
disadvantages: the number of bounding boxes per image must be very large to
achieve good recognition accuracy, most of the computational effort is wasted on
futile bounding boxes, and the rectangular boxes aggregate visual information
from multiple objects and background clutter. Both recognition accuracy and
computational performance suffer as a result.

An alternative approach is to use segmentation to extract a set of proposed
objects to be analyzed [5,9,12,15,21]. Ideal object proposals of this kind should
encapsulate the visual signal from one object and have informative boundary
shape cues that can assist subsequent tasks. Image analysis pipelines based on
such segmentation-driven object proposals have recently achieved state-of-the-
art performance on challenging benchmarks [3,4].

In this paper, we present an approach that produces highly accurate object
proposals with minimal computational overhead per image. Our key idea is to
identify critical level sets in geodesic distance transforms computed for judi-
ciously placed seeds in the image. The seeds are placed by classifiers that are
trained to discover objects. Since the geodesic distance transform can be com-
puted in near-linear time and since each computed transform is used to generate
proposals at different scales, the pipeline is extremely efficient.

Our experiments demonstrate that the presented approach achieves signifi-
cantly higher accuracy than alternative approaches as measured by both bound-
ing box overlap and detailed shape overlap with ground-truth objects. It is also
substantially faster, producing a high-performing set of object proposals for a
raw input image in less than a second using a single CPU thread.
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Fig. 1: Object proposals (in red) produced by the presented approach for two images
from the PASCAL VOC2012 dataset.

2 Overview

Our overall proposal generation pipeline is illustrated in Figure 2. Given an
image, we compute an oversegmentation into superpixels and a boundary prob-
ability map that associates a boundary probability with each superpixel edge.
This step uses existing techniques. Next we identify a set of seed superpixels.
The goal is to hit all objects in the image with a small set of automatically
placed seeds. In Section 3 we describe a reasonable seed placement heuristic that
outperforms other heuristic approaches, such as regular seed placement, random
seed placement, or saliency-based placement. In Section 4 we develop a learning-
based approach that uses trained classifiers to adaptively place seeds. As shown
in Section 6, this approach outperforms all other approaches. For example, it
hits 50% of objects in the VOC2012 dataset with just 4 seeds per image. With
20 seeds per image the approach discovers 80% of all objects, many of which
are not much larger than a single superpixel. Figure 2b shows the output of the
approach with a budget of 8 seeds.

For each seed we generate foreground and background masks that will be
used to compute the geodesic distance transform. As described in Section 3, a
simple and effective approach is to use the seed itself as the foreground mask and
the image boundary or the empty set as background. We can improve upon this
by using a learning-based approach for computing the masks. This approach is
developed in Section 4. Examples of such masks are shown in Figure 2c.

For each foreground-background mask we compute a signed geodesic distance
transform (SGDT) over the image [2,6]. Each level set of the SGDT specifies
an image region, but not all such regions form good proposals. As described
in Section 3, we can extract a small set of high-quality object proposals by
identifying certain critical level sets of the SGDT. Proposals formed by these
critical level sets are shown in Figure 2e.

In the final step we sort all proposals produced for all seeds and masks to
filter out near-duplicates. The overall pipeline yields state-of-the-art accuracy
on standard datasets, as demonstrated in Section 6.

3 Proposal Generation

Preliminaries. Given an input image I, we compute an oversegmentation into
superpixels and a boundary probability map represented as a weighted graph
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(a) Input (b) Seeds (c) Masks (d) SGDT (e) Proposals

Fig. 2: Overall proposal generation pipeline. (a) Input image with a computed super-
pixel segmentation and a boundary probability map. (b) Seeds placed by the presented
approach. (c) Foreground and background masks generated by the presented approach
for two of these seeds. (d) Signed geodesic distance transforms for these masks. (e)
Object proposals, computed by identifying critical level sets in each SGDT.

GI = (VI , EI). This is done using existing techniques, as described in Section 5.
Each node x ∈ VI corresponds to a superpixel, each edge (x, y) ∈ EI connects
adjacent superpixels, and the edge weight w(x, y) represents the likelihood of
object boundary at the corresponding image edge.

The geodesic distance dx,y between two nodes x, y ∈ VI is the length of the
shortest path between the nodes in GI . The geodesic distance transform (GDT)
measures the geodesic distance from a set of nodes Y ⊂ VI to each node x ∈ VI :

D(x;Y ) = min
y∈Y

dx,y. (1)

The GDT for all nodes in VI can be computed exactly using Dijkstra’s algorithm
in total time O(n log n), where n is the number of superpixels. Linear-time ap-
proximations exist for regular grids [20,23], but our domain is not regular and
we use the exact solution.

The geodesic distance transform can be generalized to consider a foreground
set F ⊂ VI and a background set B ⊂ VI [2,6]. In this case, the signed geodesic
distance transform (SGDT) is defined as

D(x;F,B) = D(x;F )−D(x;B). (2)

Each level set λ of the SGDT encloses a unique image segment, which can be
used as an object proposal:

Pλ = {x : D(x;F,B) < λ} . (3)

Our approach consists of computing promising foreground and background sets
and identifying a small set of appropriate level sets λ for each foreground-
background pair. The rest of this section describes the different stages of the
approach. We begin by computing a set of foreground seeds: individual super-
pixels that are likely to be located inside objects. For each such seed, we construct
foreground and background masks. For each pair of masks, we identify a small
set of level sets. Each level set specifies an object proposal.
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Seed placement. Our first task is to identify a small set of seed nodes S ⊂ VI .
The goal is to hit all the objects in the image with a small number of seeds, so
as to minimize the overall number of object proposals that must be processed by
the recognition pipeline. As shown in Section 6, naive seed selection strategies do
not perform well. Both regular sampling and random sampling fail to discover
small objects in images unless an exorbitant number of seeds is used. Saliency-
based seed placement also performs poorly since it is not effective at identifying
less prominent objects. We now describe a better seed selection heuristic, based
on greedy minimization of geodesic distances.

The heuristic proceeds iteratively. The first seed is placed in the geodesic
center of the image:

S ← {arg min
s

max
y∈VI

ds,y}. (4)

The geodesic center is the superpixel for which the maximal geodesic distance to
all other superpixels is minimized. It lies halfway on the longest geodesic path
in the superpixel graph and can be found using three consecutive shortest path
computations.

Each of the following seeds is placed so as to maximize its geodesic distance
to previous seeds:

S ← S ∪ {arg max
s

D(s;S)}. (5)

This is repeated until the desired number of seeds is reached. The arg max in
Equation 5 can be evaluated with one execution of Dijkstra’s algorithm on GI ,
thus the total runtime of the algorithm is O(NSn log n), where NS is the number
of seeds. The algorithm can be interpreted as greedy minimization of the maximal
geodesic distance of all superpixels to the seed set.

This algorithm considerably outperforms the naive approaches. It will in
turn be superseded in Section 4 by a learning-based approach, but it is a simple
heuristic that performs well and may be sufficient for some applications.

Foreground and background masks. For each seed s ∈ S, we generate fore-
ground and background masks Fs, Bs ⊂ VI that are used as input to the SGDT.
The goal here is to focus the SGDT on object boundaries by possibly expanding
the foreground mask to include more of the interior of the object that contains
it, as well as masking out parts of the image that are likely to be outside the
object. This is a challenging task because at this stage we don’t know what the
object is: it may be as small as a single superpixel or so large as to span most
of the image. We will tackle this problem systematically in Section 4, where a
learning-based approach to generate foreground and background masks will be
developed. As a baseline we will use the seed itself as the foreground mask. For
the background we will use two masks: an empty one and the image boundary.

Critical level sets. Given a foreground-background mask, our goal is to com-
pute a small set of intermediate level sets that delineate the boundaries of objects
that include the foreground. Prior work on interactive geodesic segmentation con-
sidered a single segmentation specified by the zero level set of the SGDT [2,6,19].
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Fig. 3: (a) An image with a foreground mask (red) and a background mask (blue). (b)
The corresponding signed geodesic distance transform. (c) Critical level sets identified
by our algorithm. (d) Corresponding object proposals.

However, the zero level set is sensitive to the detailed form of the masks and may
not adhere to object boundaries [18]. We perform a more detailed analysis that
yields a small number of level sets that capture object boundaries much better
in the absence of interactive refinement by a human user.

Our analysis is based on the growth of the region Pλ as a function of λ. Specif-
ically, let A(λ) = |Pλ| be the area enclosed by Pλ. This function is illustrated
in Figure 3c. Observe that when the λ level set reaches an object boundary, the
evolution of the level set slows down. On the other hand, when the level set
propagates through an object interior, it evolves rapidly. We can thus identify
level sets that follow object boundaries by analyzing their evolution rate, given
by the derivative dA

dλ . Specifically, to extract object proposals that adhere to

object boundaries, we identify strong local minima of dA
dλ .

Selecting level sets purely by their evolution rate can lead to a lopsided
selection, in which most proposals specify almost identical regions. To ensure
diversity in the level set selection, we enforce the additional constraint that no
two selected proposals can overlap by a factor of more than α. Overlap is defined

as the Jaccard coefficient of two regions: J (Pλi ,Pλj ) =
|Pλi |
|Pλj |

for λi < λj . (Note

that λi < λj implies Pλi ⊆ Pλj .) We greedily select the critical level sets by
iteratively choosing non-overlapping proposals with the lowest evolution rate.
We stop when the desired number of proposals is reached or when no more
non-overlapping level sets remain.

Once all proposals from all seeds are generated, we sort them by their evo-
lution rate, which serves as a proxy for their quality. We then greedily select
proposals that overlap with prior selections by at most α. To efficiently check
the overlap between two proposals we use a hierarchical spatial data structure.

4 Learning Seed Placement and Mask Construction

The proposal generation pipeline described in Section 3 performs very well, as
shown in Section 6. However, we can enhance its performance further by replac-
ing two heuristic steps in the pipeline with learning-based approaches. These
two steps are the seed placement algorithm and the construction of foreground
and background masks.
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Learning to place seeds. We now develop a learning-based approach for seed
placement. The approach places seeds sequentially. We train a linear ranking
classifier for the placement of each seed si, for i = 1, . . . , NS . This allows the
placement strategy to adapt: the objective that is optimized by the placement of
the first seeds need not be the same as the objective optimized by the placement
of later seeds. For example, early seeds can prioritize hitting large and prominent
objects in the image, while later seeds can optimize for discovering a variety of
smaller objects that may require specialized objectives.

At each iteration i, we compute features f
(i)
x for each possible seed location

x ∈ VI . These features include static features such as location within the image
and adaptive features such as distance to previously placed seeds. In general,

the feature values are a function of previously placed seeds: f
(i)
x 6= f

(j)
x for i 6= j.

The specific features we use are listed in Section 5.
The classifier for iteration i is trained after classifiers for iterations j < i.

For iteration i, we train a linear ranking classifier that associates a score w>
i f

with any feature vector f . During inference we place seed si in the top ranking

location as determined by the trained classifier: si = arg maxxw
>
i f

(i)
x . The train-

ing optimizes the weight vector wi. For the training, we partition each training
image I into a positive region PI and a negative region NI . The positive region
consists of all superpixels contained in ground truth objects in the image that
have not been hit by previously placed seeds. (The seeds are placed by classifiers
previously trained for iterations j < i.) The negative region is simply the com-
plement of the positive region: NI = VI \ PI . We will now formulate a learning
objective that encourages the placement of seed si inside the positive region PI
in as many images I as possible.

Our learning objective differs substantially from standard ranking methods
[13]. Standard algorithms aim to learn a ranking that fits a given complete or par-
tial ordering on the data. In our setting, such a partial ordering can be obtained

by ranking feature vectors associated with each positive region (f
(i)
x for x ∈ PI)

above feature vectors associated with the corresponding negative region NI .
While this standard objective works well for early seeds, it ceases to be effective
in later iterations when no parameter setting wi can reasonably separate the
positive region from the negative.

Our key insight is that we do not need to rank all positive seed locations above
all negative ones. Our setting only demands that the highest-ranking location be
in the positive set, since we only place one seed si at iteration i. This objective
can be formalized as finding a weight vector wi that ranks the highest-ranking
positive seed x̂ ∈ PI above the highest-ranking negative seed ŷ ∈ NI . We use

logistic regression on the difference between the two scores: w>
i f

(i)
x̂ − w>

i f
(i)
ŷ .

The log-likelihood of the logistic regression is given by

`I(wi) = log

(
1 + exp

(
max
x∈NI

w>
i f

(i)
x − max

x∈PI
w>
i f

(i)
x

))
. (6)

This objective is both non-convex and non-smooth, which makes it impossible
to compute gradients or subgradients. However, we can replace each maximum
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maxxw
>
i f

(i)
x in Equation 6 with the softmax log

∑
x exp(w>

i f
(i)
x ), which can be

used to simplify the objective to

`I(wi) = log
∑
x∈VI

exp
(
w>
i f

(i)
x

)
− log

∑
x∈PI

exp
(
w>
i f

(i)
x

)
. (7)

This objective is smooth and any gradient-based optimization algorithm such as
L-BFGS can be used to minimize it. While the second term in the objective is
still non-convex, the optimization is very robust in practice. In our experiments,
a wide variety of different initializations yield the same local minimum.

Learning to construct masks. Given a seed s ∈ S, we generate foreground
and background masks Fs, Bs ⊂ VI . These masks give us a chance to further
direct the geodesic segmentation to object boundaries by labeling some image
regions as foreground or background. Given the formulation of the SGDT, these
masks must be conservative: the foreground mask must be contained inside the
sought object and the background mask must be outside.

To construct masks, we train one linear classifier for the foreground mask
and one linear classifier for the background mask. Both classifiers operate on

features f
(s)
x , where s is the given seed and x ∈ VI is a superpixel in the image.

The training optimizes a weight vector wF for the foreground classifier and a
weight vector wB for the background classifier.

We begin by considering the learning objective for the foreground classi-
fier. This objective should reward the generation of the largest foreground mask
Fs ⊆ Os, where Os is the ground-truth object that encloses seed s. The contain-
ment in Os is a hard constraint: the foreground mask should not leak outside
the object boundary. This can be formalized as follows:

minimize
wF

∑
s

∑
x∈Os

ρ
(
w>
F f

(s)
x

)
subject to ∀s ∈ S ∀y /∈ Os w>

F f
(s)
y < 0.

(8)

Here ρ is a penalty function that maximizes the number of true positives. We
use the hinge loss, which allows us to minimize Equation 8 as a standard linear
SVM with a high negative class weight.

The hard constraints in Equation 8 need to be satisfied for a large number
of training objects Os with hugely varying appearance and size. In our initial
experiments, simply optimizing this objective led to trivial classifiers that sim-
ply produce the initial seed as the foreground mask and the empty set for the
background mask. (The learning objective for the background mask is analogous
to Equation 8.) To overcome this difficulty, we modify the formulation to train
several classifiers. At inference time, we simply use each of the trained classifiers
to generate object proposals. The basic idea is that one of the learned classifiers
absorbs the challenging training examples that demand a highly conservative
response (trivial foreground and background masks), while others can handle
examples that allow larger masks.
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(a) Image (b) Mask 1 (c) Mask 2 (d) Mask 3

Fig. 4: The output of learned mask classifiers. (a) Input image. (b-d) Foreground and
background masks generated for a given seed by the learned classifiers. The first clas-
sifier is maximally conservative, the others are more risk-taking.

Specifically, we train K foreground classifiers, with weight vectors w
(k)
F for

k = 1, . . . ,K. (We use K = 3.) In addition to the weight vectors, we also
optimize a label ks for each seed s. This is a latent variable ks ∈ {1, . . . ,K} that
associates each training seed s with one of the classifiers. The classifiers and the
associations are optimized in concert using the following objective:

minimize
w

(k)
F ,ks

∑
s

∑
x∈Os

ρ
(
w

(ks)
F · f (s)x

)
subject to ∀s ∈ S ∀y /∈ Os w

(ks)
F · f (s)y < 0.

(9)

We use alternating optimization. The different classifiers w
(k)
F are initialized by

picking K random seeds and optimizing the objective in Equation 8 for each of
these seeds separately. We next optimize the associations ks by evaluating each
classifier on each seed s and associating each seed with the classifier that yields
the lowest objective value on that seed. We then alternate between optimizing
the classifier parameters given fixed associations and optimizing the associations
given fixed classifiers. Note that each step decreases the compound objective in
Equation 9.

The extension of the objective and the algorithm to incorporate background
mask classifiers is straightforward. In the complete formulation, we train K pairs

(w
(k)
F ,w

(k)
B ) of foreground and background classifiers. For each seed, the label

ks associates it with both the foreground classifier w
(ks)
F and the background

classifier w
(ks)
B .

Figure 4 demonstrates the output of the learned mask classifiers on an ex-
ample test seed. As expected, one of the classifiers is conservative, using the
input seed as the foreground and the empty set as the background. The other
classifiers are more risk-taking. At test time we use all K masks for each seed to
generate object proposals.

5 Implementation

We compute a boundary probability image using structured forests [8]. This
boundary probability image is used to produce a superpixel segmentation. We
use the geodesic k-means algorithm, which produces a regular oversegmentation
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that adheres to strong boundaries [17]. Both algorithms are extremely efficient,
with a combined runtime of 0.5 seconds for images of size 350× 500.

Seed features used by the classifiers described in Section 4 include image
coordinates x and y, normalized to the interval [−1, 1], as well as absolute and
squared normalized coordinates. We further use the minimal color and spatial
distance to previously placed seeds, as well as the color covariance between the
given superpixel pixels and all seed pixels. We also add geodesic distances to
previously placed seeds, as well as to the image boundary. For computing these
distances, we use both graphs with constant edge weights and with boundary
probability weights.

Mask features used by the classifiers described in Section 4 include loca-
tion relative to the seed, distance to each of the image boundary edges, and
color similarity to the seed in both RGB and Lab color space. We also compute
color histograms for each superpixel and use the χ2 distance between the color
histogram of the given superpixel and the seed superpixel. Finally we add an
indicator feature for the seed itself, which ensures that there always exists a
parameter setting satisfying Equation 9.

6 Evaluation

We evaluate the presented approach on the PASCAL VOC2012 dataset [10]. All
segmentation experiments are performed on the 1449 validation images of the
VOC2012 segmentation dataset. Bounding box experiments are performed on
the larger detection dataset with 5823 annotated validation images. We train all
classifiers on the 1464 segmentation training images. Training all seed and mask
classifiers takes roughly 10 minutes in total. All experiments were performed on
a 3.4 GHz Core i7 processor. Runtimes for all methods are reported for single-
threaded execution and cover all operations, including boundary detection and
oversegmentation.

To evaluate the quality of our object proposals we use the Average Best
Overlap (ABO), covering, and recall measures [5]. The ABO between a ground
truth object set S and a set of proposals P is computed using the overlap between
each ground truth region R ∈ S and the closest object proposal R′ ∈ P:

ABO =
1

|S|
∑
R∈S

max
R′∈P

J (R,R′).

Here the overlap of two image regions R and R′ is defined as their Jaccard

coefficient J (R,R′) = |R∩R′|
|R∪R′| . Figure 5 illustrates the relationship between the

precision of fit of the two image regions and the corresponding Jaccard coefficient
values.

Covering is an area-weighted measure:

Covering =
1∑

R∈S |R|
∑
R∈S
|R| max

R′∈P
J (R,R′).
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(a) Ground truth (b) J = 0.554 (c) J = 0.703 (d) J = 0.910

Fig. 5: The relationship between region similarity and the Jaccard coefficient J . A Jac-
card coefficient of 0.5 admits rather significant departures from the ground truth shape.
A Jaccard coefficient of 0.7 is more discriminative and a coefficient of 0.9 demands a
very tight fit.

It discounts small and thin objects and assigns higher importance to larger
objects.

The recall measure is defined as the fraction of ground truth segments with
a maximum overlap larger than α [5,21]. It is also referred to as the detection
rate [16]. A fairly lenient α = 50% recall threshold has sometimes been used
[21]. However, this threshold allows poorly fitting proposals to qualify, as shown
in Figure 5b. A high recall at 50% can be achieved by covering the image evenly
with generic proposals, rather than producing detailed object shapes. Our work
focuses on generating object proposals with informative spatial support. In the
best case, our pipeline can precisely delineate objects in the image, as shown
in Figure 1. To evaluate the precision of object proposals produced by different
approaches more stringently, we also report results for the tighter α = 70% recall
threshold.

Seed placement. We first compare the geodesic seed placement heuristic de-
scribed in Section 3, the learning-based seed placement approach described in
Section 4, and four alternative seed placement strategies: regular sampling, ran-
dom sampling, saliency-weighted random sampling, and sampling based on an
oversegmentation of the image. The oversegmentation-based seed placement is
modeled on the approach of Carreira et al. [5] and uses a hierarchical segmen-
tation algorithm. For saliency-based seed placement we randomly sample super-
pixels weighted by their saliency as given by the algorithm of Perazzi et al. [17].
For each seed placement strategy we generate a single-seed foreground mask and
use the image boundary as background.

Both saliency-based and regular seeds are able to discover a reasonable num-
ber of objects with up to 3 seeds, as shown in Figure 6a. However, both methods
make less progress after the first few seeds. The saliency-based method biases
the placement to prominent objects, missing less salient ones. Regular and ran-
dom sampling both miss many smaller objects. Oversegmentation-based seeds
generally perform better, but not as well as our geodesic or learned seeds.

Figures 6b shows the ABO of our pipeline for a fixed parameter setting and
an increasing number of seeds. Random, saliency-weighted, and regular sampling
perform equally well and about 5% and 7% worse than geodesic seed placement
in ABO and recall respectively. Segmentation-based seeds perform better, but
still 1-2% worse than geodesic seeds in both metrics. With a high seed budget, the
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Fig. 6: (a,b) Comparison of our seed placement algorithms (heuristic and learned) to
other seed placement algorithms: (a) percentage of objects discovered by placed seeds,
(b) accuracy achieved by the proposal pipeline given seeds placed by different algo-
rithms. (c) Comparison of our level set selection algorithm to uniform selection: the
figure shows the accuracy achieved by the pipeline using each of these level set selection
algorithms.

geodesic and learned strategies perform similarly, however the learned strategy
usually produces 5% fewer proposals, as seeds sometimes collide and produce
duplicate proposals that are then filtered out.

Level set selection. Next, we compare the critical level set selection algorithm
developed in Section 3 to simple uniform selection. For this experiment we use
100 geodesic seeds, with single-seed foreground masks and the image boundary
as background. As shown in Figure 6c, our level set selection algorithm out-
performs uniform selection, especially with a low budget of proposals per seed.
For a single level set, our algorithm achieves a 5% higher ABO and 4% higher
recall than the zero level set. Our algorithm consistently outperforms uniform
selection. For 20 level sets our algorithm is within 0.5% of the maximal achiev-
able ABO obtained with an oracle level set selector that uses the ground truth,
while uniform selection requires twice as many level sets to achieve this level of
accuracy.
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Fig. 7: Effect of boundary detec-
tion procedure.

Boundary detection. In Figure 7, we eval-
uate the effect of the boundary detection
procedure on the final proposal quality. We
compare Sobel filtering, sketch tokens [14],
and structured forests (single-scale and multi-
scale) [8]. Sobel filtering yields poor accuracy
since it produces a fairly inaccurate bound-
ary map. Our pipeline performs well with all
other boundary detectors. Multi-scale struc-
tured forests yield the best results and we use
this procedure for all other experiments.

Object proposals. We now use the VOC2012 segmentation dataset to evaluate
the accuracy of object proposals produced by the baseline pipeline described in
Section 3 and the enhanced pipeline that uses the seed placement and mask
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Method # prop. ABO Covering 50%-recall 70%-recall Time

CPMC [5] 646 0.703 0.850 0.784 0.609 252s
Cat-Ind OP [9] 1536 0.718 0.840 0.820 0.624 119s
Selective Search [21] 4374 0.735 0.786 0.891 0.597 2.6s

Baseline GOP (130,5) 653 0.712 0.812 0.833 0.622 0.6s
Baseline GOP (150,7) 1090 0.727 0.828 0.847 0.644 0.65s
Baseline GOP (200,10) 2089 0.744 0.843 0.867 0.673 0.9s
Baseline GOP (300,15) 3958 0.756 0.849 0.881 0.699 1.2s

Learned GOP (140,4) 652 0.720 0.815 0.844 0.632 1.0s
Learned GOP (160,6) 1199 0.741 0.835 0.865 0.673 1.1s
Learned GOP (180,9) 2286 0.756 0.852 0.877 0.699 1.4s
Learned GOP (200,15) 4186 0.766 0.858 0.889 0.715 1.7s

Table 1: Accuracy and running time for three state-of-the-art object proposal methods
compared to accuracy and running time for our approach. Results are provided for our
baseline pipeline (Baseline GOP) and the enhanced pipeline that uses seed placement
and mask construction classifiers (Learned GOP). Different budgets (NS ,NΛ) for seed
placement and level set selection control the number of generated proposals (# prop).

construction classifiers described in Section 4. Table 1 compares the accuracy
of our pipeline (GOP) to three state-of-the-art object proposal methods, each
of which produces a different number of segments. We set the number of seeds
NS and number of level sets NΛ in our pipeline to different values to roughly
match the number of proposals produced by the other approaches. Accuracy is
evaluated using ABO, covering, and recall at J ≥ 50% and J ≥ 70%.
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Fig. 8: Accuracy of CMPC and
GOP as a function of segment size.

Our baseline performs slightly better than
CPMC [5] in ABO and 70%-recall and greatly
outperforms it at 50%-recall. CPMC is bet-
ter at proposing larger objects, which leads
to higher covering results. Figure 8 provides a
more detailed comparison. CPMC is based on
graph cuts and is less sensitive to texture vari-
ations within large objects. However, CPMC
is more than two orders of magnitude slower
than GOP, making it impractical for larger
datasets. Evaluating CPMC on 1464 images
took two full days on an 8-core processor,
while GOP processed the dataset in less than two minutes on the same ma-
chine. (0.6 seconds per image on a single core.)

Baseline GOP outperforms category-independent object proposals [9] using
just two-thirds of the number of proposals. Again our approach is two orders of
magnitude faster.

Selective search [21] performs extremely well at 50%-recall. However, when
the recall threshold is increased to 70% our approach significantly outperforms
selective search. At this threshold, Baseline GOP with 660 proposals outperforms
the recall achieved by selective search with more than 4000 proposals. When the
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Fig. 9: Recall for bounding box proposals. (a-c) Recall at above a fixed threshold rate
J for a varying number of generated proposals. (d-f) Recall at different thresholds for
fixed proposal budgets.

proposal budget for GOP is increased to match the number of proposals produced
by selective search, our 70%-recall is 10% higher.

The seed placement and mask construction classifiers yield a noticeable in-
crease in proposal accuracy, as reflected in the ABO and 70%-recall measures.
The classifiers increase the ABO by about 1% and the 70%-recall by up to 3%.
The additional computational cost of evaluating the classifiers increases the run-
ning time by about half a second and is primarily due to the feature computation.

Bounding box proposals. We also evaluate the utility of the presented ap-
proach for generating bounding box proposals. We produce bounding box pro-
posals simply by taking the bounding boxes of object proposals produced by
GOP. In this mode, using mask construction classifiers does not confer an ad-
vantage over simple foreground-background masks since segmentation accuracy
is less important. We thus use baseline foreground-background masks for this
experiment. The seed placement classifiers still reduce the number of generated
proposals by 5% and yield higher accuracy, especially for a small number of
seeds.

To evaluate the accuracy of bounding box proposals we use the VOC2012
detection dataset and follow the evaluation methodology of Manén et al. [16].
The results are shown in Figure 9. Our approach is compared to three state-of-
the-art methods: objectness [1], selective search [21], and the Randomized Prim
algorithm [16]. We measure recall for different Jaccard coefficient thresholds and
for different proposal budgets N . For objectness and selective search we select
the N highest ranking proposals produced by these methods. For Randomized
Prim and GOP we generate N proposals by varying the algorithms’ parameters.
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Method
VUS 10000 windows VUS 2000 windows

Time
Linear Log Linear Log

Objectness [1] 0.332 0.244 0.323 0.225 2.2s
Randomized Prim [16] 0.603 0.334 0.511 0.274 1.1s
Selective search [21] 0.573 0.3501 0.528 0.301 2.6s
GOP 0.624 0.363 0.546 0.310 0.9s

Table 2: Evaluation of bounding box proposals using the VUS measure.

We further compute the volume under surface (VUS) measure as proposed
by Manén et al. [16]. This measures the average recall by linearly varying the
Jaccard coefficient threshold J ∈ [0.5, 1] and varying the number of proposals
N on either linear or log scale. The results are shown in Table 2. Manén et
al. [16] vary the proposal budget N from 0 to 10, 000. This unfairly favors our
method and the Randomized Prim algorithm since the other approaches produce
a lower average number of proposals. We therefore additionally compute a VUS
for 2, 000 windows, for which each algorithm produces approximately the same
number of proposals.

Objectness performs best at 50%-recall and a low proposal budget, since it
is able to rank proposals very well. However, its performance degrades quickly
when the recall threshold is increased.

Both selective search and GOP consistently outperform Randomized Prim.
Selective search has the edge at high recall with a low proposal budget, while
our approach performs better in all other regimes. This is also reflected in the
results for the VUS measure (Table 2). GOP outperforms all other approaches
in both linear and logarithmic VUS measure, for both 2000 and 10000 windows.
The running time of our approach is again the lowest.

7 Discussion

We presented a computationally efficient approach for identifying candidate ob-
jects in an image. The presented approach outperforms the state of the art in
both object shape accuracy and bounding box accuracy, while having the lowest
running time. In the future it would be interesting to also learn the metric on
which the geodesic distance transform is computed. In addition, joint learning
of all parameters for all steps in the pipeline could exploit correlations between
the different learned concepts and further increase the accuracy of the approach.

Acknowledgements. Philipp Krähenbühl was supported by the Stanford Grad-
uate Fellowship.

1 Note that our results for selective search differ significantly from the results reported
by Manén et al. [16]. We use the highest-ranking bounding boxes in the evaluation
instead of randomly subsampling them.
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6. Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing.
ACM Trans. Graph. 29(5) (2010) 2, 3, 4

7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005) 1

8. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)
8, 11

9. Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking.
PAMI 36(2) (2014) 1, 12

10. Everingham, M., Van Gool, L.J., Williams, C.K.I., Winn, J.M., Zisserman, A.: The
Pascal Visual Object Classes (VOC) challenge. IJCV 88(2) (2010) 9

11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detec-
tion with discriminatively trained part-based models. PAMI 32(9) (2010) 1

12. Gu, C., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. In: CVPR
(2009) 1

13. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD (2002)
6

14. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representa-
tion for contour and object detection. In: CVPR (2013) 11

15. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple
segmentations. In: BMVC (2007) 1

16. Manén, S., Guillaumin, M., Gool, L.V.: Prime object proposals with randomized
Prim’s algorithm. In: ICCV (2013) 10, 13, 14
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