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Abstract

Saliency estimation has become a valuable tool in image
processing. Yet, existing approaches exhibit considerable
variation in methodology, and it is often difficult to attribute
improvements in result quality to specific algorithm proper-
ties. In this paper we reconsider some of the design choices
of previous methods and propose a conceptually clear and
intuitive algorithm for contrast-based saliency estimation.

Our algorithm consists of four basic steps. First, our
method decomposes a given image into compact, perceptu-
ally homogeneous elements that abstract unnecessary de-
tail. Based on this abstraction we compute two measures of
contrast that rate the uniqueness and the spatial distribu-
tion of these elements. From the element contrast we then
derive a saliency measure that produces a pixel-accurate
saliency map which uniformly covers the objects of interest
and consistently separates fore- and background.

We show that the complete contrast and saliency es-
timation can be formulated in a unified way using high-
dimensional Gaussian filters. This contributes to the con-
ceptual simplicity of our method and lends itself to a highly
efficient implementation with linear complexity. In a de-
tailed experimental evaluation we analyze the contribution
of each individual feature and show that our method out-
performs all state-of-the-art approaches.

1. Introduction
The computational identification of image elements that

are likely to catch the attention of a human observer is a
complex cross-disciplinary problem. Realistic, high-level
models need to be founded on a combination of insights
from neurosciences, biology, computer vision, and other
fields. However, recent research has shown that compu-
tational models simulating low-level stimuli-driven atten-
tion [17, 20, 21] are quite successful and represent useful
tools in many application scenarios, including image seg-
mentation [14], resizing [5] and object detection [27].

Results from perceptual research [11,24,25] indicate that
the most influential factor in low-level visual saliency is
contrast. However, the definition of contrast in previous

Figure 1: From left to right: input images, image abstrac-
tion into perceptually homogeneous elements, results of our
saliency computation, ground truth labeling.

works is based on various different types of image features,
including color variation of individual pixels, edges and
gradients, spatial frequencies, structure and distribution of
image patches, histograms, multi-scale descriptors, or com-
binations thereof. The significance of each individual fea-
ture often remains unclear [21], and as recent evaluations
show [7] even quite similar approaches may exhibit consid-
erably varying performance.

In this work we reconsider the set of fundamentally rel-
evant contrast measures and their definition in terms of im-
age content. Our method is based on the observation that an
image can be decomposed into basic, structurally represen-
tative elements that abstract away unnecessary detail, and at
the same time allow for a very clear and intuitive definition
of contrast-based saliency.

Our first main contribution therefore is a concept and al-
gorithm to decompose an image into perceptually homoge-
neous elements and to derive a saliency estimate from two
well-defined contrast measures based on the uniqueness and
spatial distribution of those elements. Both, local as well as
the global contrast are handled by these measures in a uni-
fied way.

Central to the contrast and saliency computation is our
second main contribution; we show that all involved oper-
ators can be formulated within a single high-dimensional
Gaussian filtering framework. Thanks to this formulation,
we achieve a highly efficient implementation with linear



complexity. The same formulation also provides a clear link
between the element-based contrast estimation and the ac-
tual assignment of saliency values to all image pixels.

As we demonstrate in our experimental evaluation, each
of our individual measures already performs close to or even
better than existing approaches, and our combined method
currently achieves the best ranking results on the public
benchmark provided by [2, 21].

2. Related Work
Methods that model bottom-up, low-level saliency can

be roughly classified into biologically inspired methods and
computationally oriented approaches. Works belonging to
the first class [15, 18] are generally based on the archi-
tecture proposed by Koch and Ullman [20], in which the
low-level stage processes features such as color, orienta-
tion of edges, or direction of movement. One implemen-
tation of this model is the work by Itti et al. [18], which use
a Difference of Gaussians approach to evaluate those fea-
tures. However, as the evaluation by Cheng et al. [7] shows,
the resulting saliency maps are generally blurry, and often
overemphasize small, purely local features, which renders
this approach less useful for applications such as segmenta-
tion, detection, etc.

In contrast, computational methods may also be inspired
by biological principles, but relate stronger to typical appli-
cations in computer vision and graphics. For example, fre-
quency space methods [13,16] determine saliency based on
the amplitude or phase spectrum of the Fourier transform of
an image. The resulting saliency maps better preserve the
high level structure of an image than [18], but exhibit un-
desirable blurriness and tend to highlight object boundaries
rather than its entire area.

For colorspace techniques one can distinguish between
approaches using local or global analysis of (color-) con-
trast. Local methods estimate the saliency of a particular
image region based on immediate image neighborhoods,
e.g., based on dissimilarities at the pixel-level [22], using
multi-scale Difference of Gaussians [17] or histogram anal-
ysis [21]. While such approaches are able to produce less
blurry saliency maps, they are agnostic of global relations
and structures, and they may also be more sensitive to high
frequency content like image edges and noise [2].

Global methods take contrast relations over the complete
image into account. For example, there are different vari-
ants of patch-based methods which estimate dissimilarity
between image patches [12,21,28]. While these algorithms
are more consistent in terms of global image structures, they
suffer from the involved combinatorial complexity, hence
they are applicable only to relatively low resolution images,
or they need to operate in spaces of reduced dimensional-
ity [10], resulting in loss of small, potentially salient detail.
The method of Achanta et al. [2] also works on a per-pixel

basis, but achieves globally more consistent results by com-
puting color dissimilarities to the mean image color. They
use Gaussian blur in order to decrease the influence of noise
and high frequency patterns. However, their method does
not account for any spatial relationship inside the image,
and may highlight background regions as salient.

Related to our definition of contrast is the work of Liu et
al. [21] which combines multi-scale contrast, local contrast
based on surrounding, context, and color spatial distribu-
tion to learn a conditional random field (CRF) for binary
saliency estimation. However, the significance of features
in the CRF remains unclear. Ren et al. [26] and Cheng et
al. [7] employ image segmentation as part of their saliency
estimation. In [26] the segmentation serves solely to allevi-
ate the negative influence of highly textured regions, noise
and outliers during their subsequent clustering. Cheng et
al. [7], who generate 3D histograms and compute dissimi-
larities between histogram bins, reported the best perform-
ing method among global contrast-based approaches so far.
However, due to the use of larger-scale image segments in
both approaches [7,26], contrast measures involving spatial
distribution cannot easily be formulated. Moreover, such
methods have problems handling images with cluttered and
textured background.

Despite many recent improvements, the varying evalu-
ation results in [7] indicate that the actual significance of
individual features and contrast measures in existing meth-
ods is difficult to assess. Our work reduces the set of con-
trast measures to just two, which can be intuitively defined
over abstract image elements, while still producing pixel-
accurate saliency masks.

3. Overview
As motivated before, we propose an algorithm that first

decomposes the input image into basic elements. Based on
these elements we define two measures for contrast that are
used to compute per-pixel saliency. Hence, our algorithm
consists of the following steps (see Figure 2).

1. Abstraction. We aim to decompose the image into ba-
sic elements that preserve relevant structure, but abstract un-
desirable detail. Specifically, each element should locally
abstract the image by clustering pixels with similar prop-
erties (like color) into perceptually homogeneous regions.
Discontinuities between such regions, i.e., strong contours
and edges in the image, should be preserved as boundaries
between individual elements. Finally, constraints on shape
and size should allow for compact, well localized elements.

One approach to achieve this type of decomposition is
an edge-preserving, localized oversegmentation based on
color (see Figure 2 b). Thanks to this abstraction, con-
trast between whole image regions can be evaluated using
just those elements. Furthermore, we show that the quality



(a) Source image. (b) Abstraction. (c) Uniqueness. (d) Distribution. (e) Saliency. (f) Ground truth.

Figure 2: Illustration of the main phases of our algorithm. The input image is first abstracted into perceptually homogeneous
elements. Each element is represented by the mean color of the pixels belonging to it. We then define two contrast measures
per element based on the uniqueness and spatial distribution of elements. Finally, a saliency value is assigned to each pixel.

of saliency maps is extremely robust to the number of ele-
ments. We can then define our two measures for contrast.

2. Element uniqueness. This first contrast measure im-
plements the commonly employed assumption that image
regions, which stand out from other regions in certain as-
pects, catch our attention and hence should be labeled more
salient. We therefore evaluate how different each respective
element is from all other elements constituting an image,
essentially measuring the “rarity” of each element.

In one form or another, this assumption has been the ba-
sis for most previous algorithms for contrast-based saliency.
However, thanks to our abstraction, variation on the pixel
level due to small scale textures or noise is rendered irrele-
vant, while discontinuities such as strong edges stay sharply
localized. As discussed in Section 2, previous multi-scale
techniques often blur or lose this information.

3. Element distribution. While saliency implies unique-
ness, the opposite might not always be true [19]. Ideally
colors belonging to the background will be distributed over
the entire image exhibiting a high spatial variance, whereas
foreground objects are generally more compact [12, 21].

The compactness and locality of our image abstracting
elements allows us to define a corresponding second mea-
sure, which renders unique elements more salient when they
are grouped in a particular image region rather than evenly
distributed over the whole image. Techniques based on
larger-scale image segmentation such as [7] lose this im-
portant source of information.

An example showing the differences between element
uniqueness and element distribution is shown in Figure 3.

4. Saliency assignment. The two above contrast mea-
sures are defined on a per-element level. In a final step, we
assign the actual saliency values to the input image to get a
pixel-accurate saliency map. Thanks to this step our method
can assign proper saliency values even to fine pixel-level
detail that was excluded, on purpose, during the abstraction
phase, but for which we still want a saliency estimate that
conforms to the global saliency analysis.

4. Algorithm
In the following we describe the details of our method,

and we show how the contrast measures as well as the
saliency assignment can be efficiently computed based on
N-D Gaussian filtering [4].

4.1. Abstraction

For the image abstraction we use an adaptation of SLIC
superpixels [3] to abstract the image into perceptually uni-
form regions. SLIC superpixels segment an image using
K-means clustering in RGBXY space. The RGBXY space
yields local, compact and edge aware superpixels, but does
not guarantee compactness. For our image abstraction we
slightly modified the SLIC approach and instead use K-
means clustering in geodesic image distance [8] in CIELab
space. Geodesic image distance guarantees connectivity,
while retaining the locality, compactness and edge aware-
ness of SLIC superpixels. See Figures 2 and 7 for examples.

4.2. Element uniqueness

Element uniqueness is generally defined as the rarity of
a segment i given its position pi and color in CIELab ci
compared to all other segments j:

Ui =

N∑
j=1

‖ci − cj‖2 · w(pi,pj)︸ ︷︷ ︸
w

(p)
ij

. (1)

By introducing w(p)
ij we effectively combine global and lo-

cal contrast estimation with control over the influence ra-
dius of the uniqueness operator. A local function w

(p)
ij

yields a local contrast term, which tends to overemphasize
object boundaries in the saliency estimation [22], whereas
w

(p)
ij ≈ 1 yields a global uniqueness operator, which cannot

represent sensitivity to local contrast variation.
Moreover, evaluating Eq. (1) globally generally requires

O(N2) operations, where N is the number of segments.
This is why some related works down-sample the image to a
resolution where quadratic number of operations is feasible.
As discussed in previous sections, saliency maps computed
on down-sampled images cannot preserve sharply localized



contours and generally exhibit a high level of blurriness (see
comparison in Section 5). Cheng et al. [7] approximate
Eq. (1) using a histogram. Achatan et al. [2] approximate
it as the distance to mean color. Both approximations are
completely global with w(p)

ij = 1.

We will show that for a Gaussian weight w(p)
ij =

1
Zi

exp(− 1
2σ2

p
‖pi − pj‖2) Eq. (1) can be evaluated in lin-

ear time O(N). σp controls the range of the unique-
ness operator and Zi is the normalization factor ensuring∑N
j=1 w

(p)
i,j = 1. We decompose Eq. (1) by factoring out

the quadratic error function:

Ui =

N∑
j=1

‖ci − cj‖2w(p)
ij

= c2i

N∑
j=1

w
(p)
ij︸ ︷︷ ︸

1

−2ci
N∑
j=1

cjw
(p)
ij︸ ︷︷ ︸

blur cj

+
N∑
j=1

c2jw
(p)
ij︸ ︷︷ ︸

blur c2j

. (2)

Both terms
∑N
j=1 cjw

(p)
ij and

∑N
j=1 c

2
jw

(p)
ij can be evalu-

ated using a Gaussian blurring kernel on color cj and the
squared color c2j . Gaussian blurring is decomposable along
x and y axis of the image and can thus be evaluated very
efficiently.

In our implementation we use the permutohedral lattice
embedding presented in Adams et al. [4], which yields a
linear time approximation of the Gaussian filter in arbitrary
dimensions. The permutohedral lattice exploits the band
limiting effects of Gaussian smoothing, such that a corre-
spondingly filtered function can be well approximated by
a sparse number of samples. Adams et al. use samples on
simplices of a high dimensional lattice structure to repre-
sent the result of the filtering operation. They then evaluate
the filter by downsampling the input values onto the lattice,
blur along each dimension of the lattice and reconstruct the
resulting signal by interpolation.

By using a Gaussian weight w(p)
ij we are able to evaluate

Eq. (1) in linear time, without crude approximations such
as histograms or distance to mean color. Parameter σp was
set to 0.25 in all experiments, which allows for a balance
between local and global effects. Examples for the unique-
ness measure are shown in Figure 3b.

4.3. Element distribution

Conceptually, we define the element distribution mea-
sure for a segment i using the spatial varianceDi of its color
ci, i.e., we measure its occurrence elsewhere in the image.
As motivated before, low variance indicates a spatially com-
pact object which should be considered more salient than
spatially widely distributed elements. Hence we compute

(a) Source image. (b) Uniqueness. (c) Distribution. (d) Saliency.

Figure 3: Uniqueness, spatial distribution, and the com-
bined saliency map. The uniqueness prefers rare colors,
whereas the distribution favors compact objects. Combined
together those measures provide better perfomance.

Di =

N∑
j=1

‖pj − µi‖2 w(ci, cj)︸ ︷︷ ︸
w

(c)
ij

, (3)

where w(c)
ij describes the similarity of color ci and color cj

of segments i and j, respectively, pj is again the position
of segment j, and µi =

∑N
j=1 w

(c)
ij pj defines the weighted

mean position of color ci.
Again naive evaluation of Eq. (3) has quadratic runtime

complexity. By choosing the color similarity to be Gaus-
sian w(c)

ij = 1
Zi

exp(− 1
2σ2

c
‖ci − cj‖2), we can efficiently

evaluate it in linear time:

Di =

N∑
j=1

‖pj − µi‖2w(c)
ij

=

N∑
j=1

p2
jw

(c)
ij − 2µi

N∑
j=1

pjw
(c)
ij︸ ︷︷ ︸

µi

+µi
2
N∑
j=1

w
(c)
ij︸ ︷︷ ︸

1

=

N∑
j=1

p2
jw

(c)
ij︸ ︷︷ ︸

blur p2
j

− µi︸︷︷︸
blur pj

2. (4)

Here the position pj and squared position p2
j are blurred in

the 3-dimensional color space. It can be efficiently evalu-
ated by discretizing the color space and then evaluating a
separable Gaussian blur along each of the L, a and b di-
mension. Since the Gaussian filter is additive, we can sim-
ply add position values associated to the same color. As
in Eq. (2) we use the permutohedral lattice [4] as a linear
approximation to the Gaussian filter in the Lab space.

The parameter σc controls the color sensitivity of the el-
ement distribution. We use σc = 20 in all our experiments.



See Figure 3 for a visual comparison of uniqueness and spa-
tial distribution.

In summary, by simple evaluation of two Gaussian fil-
ters we can compute two non-trivial, but intuitively defined
contrast measures on a per-element basis. By filtering color
values in the image, we compute the uniqueness of an ele-
ment, while filtering position values in the Lab color space
gives us the element distribution. Next we will look at how
to combine both measures, which have a different scaling
and units associated to them, in order to compute a per-pixel
saliency value.

4.4. Saliency assignment

We start by normalizing both uniqueness Ui and distri-
butionDi to the range [0..1]. We assume that both measures
are independent, and hence we combine these terms as fol-
lows to compute a saliency value Si for each element:

Si = Ui · exp(−k ·Di), (5)

In practice we found the distribution measure Di to be of
higher significance and discriminative power. Therefore,
we use an exponential function in order to emphasize Di.
In all our experiments we use k = 6 as the scaling factor for
the exponential. Figure 6 (middle) shows the performance
of the uniqueness Ui, distribution Di and their combination
Si, while Figure 3 shows a visual comparison.

As the final step, we need to assign a final saliency value
to each image pixel, which can be interpreted as an up-
sampling of the per-element saliency Si. However, naive
up-sampling by assigning Si to every pixel contained in ele-
ment i carries over all segmentation errors of the abstraction
algorithm. Instead we adopt an idea proposed in the context
of range image up-sampling [9] and apply it to our frame-
work. We define the saliency S̃i of a pixel as a weighted
linear combination of the saliency Sj of its surrounding im-
age elements

S̃i =

N∑
j=1

wijSj . (6)

By choosing a Gaussian weight wij = 1
Zi

exp(− 1
2 (α‖ci −

cj‖2+β‖pi−pj‖2), we ensure the up-sampling process is
both local and color sensitive. Here α and β are parameters
controlling the sensitivity to color and position. We found
α = 1

30 and β = 1
30 to work well in practice.

As for our contrast measures in Eq. (1) and (3), Eq. (6)
describes a high-dimensional Gaussian filter and can hence
be evaluated within the same filtering framework [4]. The
saliency value of each element is embedded in a five-
dimensional space using its position pi and its color value
ci in RGB (as we found it to outperform CIELab for up-
sampling). Since our abstract elements do not have a regu-
lar shape we create a point sample in RGBXY space at each

pixel position p̃i within a particular element and blur the
RGBXY space along each of its dimensions. The per-pixel
saliency values can then be retrieved with a lookup in that
high-dimensional space using the pixel’s position p̃i and its
color value c̃i in the input image.

The resulting pixel-level saliency map can have an arbi-
trary scale. In a final step we rescale the saliency map to the
range [0..1] or to contain at least 10% saliency pixels.

In summary, our algorithm computes the saliency of an
image by first abstracting it into small, perceptually homo-
geneous elements. It then applies a series of three Gaussian
filtering steps in order to compute the uniqueness and spa-
tial distribution of elements as well as to perform the final
per-pixel saliency assignment.

5. Results
We provide an exhaustive comparison of our ap-

proach (SF) to several state-of-art methods on a database
of 1000 images [23] with binary ground truth [2]. Saliency
maps of previous works are provided by [7]. Figure 5 shows
a visual comparison of the different methods.

5.1. Precision and Recall

Similar to [2, 7, 21], we evaluate the performance of our
algorithm measuring its precision and recall rate. Preci-
sion corresponds to the percentage of salient pixels cor-
rectly assigned, while recall corresponds to the fraction of
detected salient pixels in relation to the ground truth number
of salient pixels.

High recall can be achieved at the expense of reducing
the precision and vice-versa so it is important to evaluate
both measures together. We perform two different exper-
iments. In both cases we generate a binary saliency map
based on some saliency threshold. In the first experiment
we compare binary masks for every threshold in the range
[0..255]. The resulting curves in Figure 4 show that our al-
gorithm (SF) consistently produces results closer to ground
truth at every threshold and for any given recall rate.

In the second experiment we use the image dependent
adaptive threshold proposed by [2], defined as twice the
mean saliency of the image:

Ta =
2

W ×H

W∑
x=1

H∑
y=1

S(x, y), (7)

whereW andH are the width and the height of the saliency
map S, respectively. In addition to precision and recall
we compute their weighted harmonic mean measure or F-
measure, which is defined as:

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

. (8)

Similar to [2, 7] we set β2 = 0.3.
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Figure 4: Left, middle: precision and recall rates for all algorithms. Right: precision, recall, and F-measure for adaptive
thresholds. In all experiments, our approach consistently produces results closest to ground truth. See the legend of Figure 5
for the references to all methods.

(a) SRC (b) SR [16](c) MZ [22](d) LC [29] (e) IT [18] (f) GB [15] (g) AC [1] (h) CA [12] (i) FT [2] (j) HC [7] (k) RC [7] (l) SF (m) GT

Figure 5: Visual comparison of previous approaches to our method (SF) and ground truth (GT). As also shown in the
numerical evaluation, SF consistently produces saliency maps closest to ground truth. We compare to spectral residual
saliency (SR [16]), fuzzy growing (MZ [22]), spatiotemporal cues (LC [29]), visual attention measure (IT [18]), graph-based
saliency (GB [15]), salient region detection (AC [1]), context-aware saliency (CA [12]), frequency-tuned saliency (FT [2])
and global-contrast saliency (HC [7] and RC [7]).

Figure 6 shows that our algorithm performs consistently
and robustly over a wide range of numbers of image ele-
ments. Furthermore, we evaluate precision and recall for
each individual phase of our algorithm, showing the benefit
of combining all steps.

5.2. Mean Absolute Error

Neither the precision nor recall measure consider the
true negative saliency assignments, i.e., the number of pixel
correctly marked as non-salient. This favors methods that

successfully assign saliency to salient pixels but fail to de-
tect non-salient regions over methods that successfully de-
tect non-salient pixels but make mistakes in determining the
salient ones. Moreover, in some application scenarios [5]
the quality of the weighted, continuous saliency maps may
be of higher importance than the binary masks.

For a more balanced comparison that takes these effects
into account we therefore also evaluate the mean absolute
error (MAE) between the continuous saliency map S (prior
to thresholding) and the binary ground truth GT . The mean
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Figure 6: Left: a comparison of precision and recall curves for different numbers of image elements shows that our method
performs robustly over a wide range of image elements (see also Figure 7). A significant drop is only visible for an extremely
low number of 10 elements. Middle: evaluation of each individual phase of our algorithm. Both contrast measures alone
achieve a performance close to the state-of-the-art RC [7]. However, the combination of all steps in our algorithm is crucial
for optimal performance. Right: Mean absolute error of the different saliency methods to ground truth.
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Figure 7: Visual comparison of resulting saliency maps for
different numbers of image elements.

absolute error is then defined as

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−GT (x, y)|, (9)

where W and H are again the width and the height of the
respective saliency map and ground truth image.

Figure 6 shows that our method also outperforms the
other approaches in terms of the MAE measure, which
provides a better estimate of the dissimilarity between the
saliency map and ground truth. Results have been averaged
over all images in [23], and all results have been generated
with the same parameter settings. It is also interesting to ob-
serve that the HC method has a lower MAE than RC, which
is in contrast to the precision and recall results.

5.3. Performance

In Table 1 we compare the average running time of our
approach to the currently best performing methods on the
benchmark images. Timings have been taken on an Intel
Core i7-920 2.6 GHz with 3GB RAM. Our running times

Method CA [12] FT [2] HC [7] RC [7] SF
Time(s) 51.2 0.012 0.011 0.144 0.153

Code Matlab C++ C++ C++ C++

Table 1: Comparison of running times.

are similar to that of RC (both methods involve segmen-
tation), with our method spending most of the processing
time on abstraction (about 40%) and the final saliency up-
sampling (50%). Only 10% account for the actual per-
element contrast and saliency computation. The CA method
is slower because it requires an exhaustive nearest-neighbor
search among patches.

5.4. Limitations

Saliency estimation based on color contrast may not al-
ways be feasible, e.g., in the case of lighting variations, or
when fore- and background colors are very similar. In such
cases, the thresholding procedures used for all the above
evaluations can result in noisy segmentations (see Figure 8).

One option to significantly reduce this effect is to per-
form a single min-cut segmentation [6] as a post process,
using our saliency maps as a prior for the min-cut data term,
and color differences between neighboring pixels for the
smoothness term. The graph structure facilitates smooth-
ness of salient objects and significantly improves the per-
formance of our algorithm, when binary saliency maps are
required for challenging images. As Figure 8 shows, even
in cases where thresholded saliency masks are not of the
desired quality, the original continuous saliency maps are
of sufficient coherence so that a straight forward min-cut
segmentation produces high quality masks.

6. Conclusions
We presented Saliency Filters, a method for saliency

computation based on an image abstraction into struc-



Figure 8: Limitations and min-cut segmentation. From left
to right: Input image, saliency map computed with our
method, the noisy result of simple thresholding, and min-
cut segmentation applied to the saliency map.

turally representative elements and contrast-based saliency
measures, which can be consistently formulated as high-
dimensional Gaussian filters. Our filter-based formula-
tion allows for efficient computation and produces per-pixel
saliency maps, with the currently best performance in a
ground truth comparison to various state-of-the-art works.

For future work we believe that investigating more so-
phisticated techniques for image abstraction, including ro-
bust color or structure distance measures, will be beneficial.
Moreover, our proposed filter-based formulation is suffi-
ciently general to serve as an extendable framework, e.g.,
to incorporate higher-level features such as face detectors.
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