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Abstract. Dense optical flow estimation in images is a challenging problem because the
algorithm must coordinate the estimated motion across large regions in the image, while
avoiding inappropriate smoothing over motion boundaries. Recent works have advocated
for the use of nonlocal regularization to model long-range correlations in the flow. However,
incorporating nonlocal regularization into an energy optimization framework is challenging
due to the large number of pairwise penalty terms. Existing techniques either substitute
intermediate filtering of the flow field for direct optimization of the nonlocal objective,
or suffer substantial performance penalties when the range of the regularizer increases.
In this paper, we describe an optimization algorithm that efficiently handles a general
type of nonlocal regularization objectives for optical flow estimation. The computational
complexity of the algorithm is independent of the range of the regularizer. We show that
nonlocal regularization improves estimation accuracy at longer ranges than previously
reported, and is complementary to intermediate filtering of the flow field. Our algorithm
is simple and is compatible with many optical flow models.

1 Introduction

Most existing algorithms for dense motion estimation in images attempt to minimize an energy
function of the form

E(u) = Edata(u) + λEreg(u),

where Edata(u) is a data term that aims to preserve image features under the motion u, and
Ereg(u) is a regularization term that favors smoothness [18,4].

The data term commonly penalizes differences between image features, such as brightness
[8,5], gradient or higher-order derivatives [11], or more sophisticated patch-based features [17,23].
A variety of penalty functions can be used, including the L2 norm [8], the Lorentzian [5], the
Charbonnier penalty [7], the L1 norm [25,21], and generalized Charbonnier penalties [18]. Both
the features and the penalty function can be learned from data [19].

The regularization term generally takes the form

Ereg(u) =
∑
{i,j}∈N

ρ(ui − uj)wij ,

where ui and uj are the flow vectors corresponding to pixels i and j, ρ is a penalty function,
wij is an optional data-dependent weight, and N is the 4-connected pixel grid. A key challenge
for the regularization term is to coordinate the motion across potentially large areas in the
image without inappropriately smoothing over object boundaries. To this end, a variety of robust
penalty functions have been explored [5,7,11,25,18], as well as anisotropic weights that attenuate
the influence of the regularizer based on the content of the image [10,22,19,24].

A complementary avenue for improving the accuracy of optical flow estimation is to employ
nonlocal regularization terms that coordinate the estimated motion across larger areas in the
image. This can be accomplished by establishing penalty terms on non-adjacent flow vectors.
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Recently, Sun et al. [18] have proposed a nonlocal regularization objective that connects each pixel
to all pixels in a small neighborhood. However, since the number of pairwise terms grows rapidly
with the size of the neighborhood, the nonlocal objective is not optimized directly. Independently,
Werlberger et al. [23] have advocated for the use of nonlocal regularization, and extended the
total variation regularization framework to incorporate nonlocal pairwise terms. However, the
optimization operates on each individual pairwise term, thus its computational complexity grows
quadratically with the maximal distance of the nonlocal connections.

In this paper, we describe a new optimization algorithm that can handle nonlocal regular-
ization objectives of any given spatial extent. The algorithm accommodates a wide range of
nonlocal regularization terms, including the formulations proposed in prior work [18,23]. The
nonlocal regularization objective is optimized directly, in concert with the other objectives. The
computational complexity of the algorithm is linear in the size of the image and is independent
of the number of nonlocal connections.

Our experiments demonstrate that nonlocal regularization provides significant benefits at
longer distances than was previously reported. Furthermore, we show that intermediate filtering
of the flow field is complementary to direct optimization of the nonlocal objective. Our algorithm
is simple to implement and is efficient without taking advantage of parallelism or advanced
hardware.

2 Nonlocal model

In this paper we augment the classical optical flow model with a nonlocal regularization term:

E(u) =ED(u) + λlEL(u) + λn
∑
i

∑
j>i

wijρN (ui − uj)︸ ︷︷ ︸
EN (u)

. (1)

Here ui is the flow vector at pixel i, ED is the data term, and EL is the traditional grid-connected
regularization term [8,5,11,25]. EN is the nonlocal regularization objective, defined over all pairs
of pixels in the image. The penalty function used by the nonlocal term is denoted by ρN . Our
algorithm accommodates a variety of penalty functions, including the L2 norm ρN (x) = x2 [8],
the Lorentzian ρN (x) = log(1 + x2/2ε2) [5], the Charbonnier penalty ρN (x) =

√
x2 + ε2 [7,11],

and the generalized Charbonnier penalty ρN (x) = (x2 + ε2)α [18].
The pairwise weights wij define the effective range of influence of EN , which is in general

anisotropic and data-dependent. In our model, the weights wij are defined by a high-dimensional
Gaussian kernel in an arbitrary feature space:

wij = k(fi, fj) = exp

(
−‖fi − fj‖2

2σ2

)
,

where fi and fj are the feature vectors associated with pixels i and j. Note that this formulation
allows for generalizations of the nonlocal terms used in prior work [18,23].

In our implementation, the feature vector associated with a pixel is simply a concatenation
of the color and position of the pixel, and the weight is defined as

wij = exp

(
−‖pi − pj‖2

2σ2
x

− ‖ci − cj‖2

2σ2
c

)
,

where pi is the position of pixel i and ci is its color in the CIELAB color space. σx is the spatial
standard deviation and σc controls color sensitivity. This definition of wij is analogous to prior
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Fig. 1: Visualization of the nonlocal weights on three images from the Middlebury benchmark. In each
subfigure, the greyscale image (right) visualizes the weights wij for nonlocal connections of the central
pixel i with all other pixels j. Higher intensity corresponds to higher weight. The color image (left) shows
the corresponding part of the original image, with the pixel i marked by a small circle.

work [18,23]. Figure 1 visualizes the nonlocal weight on three images from the Middlebury optical
flow benchmark [4]. The figure shows areas of size 90 × 90. The spatial standard deviation σx
was set to 15.

3 Optimization

The outer loop of our flow estimation is a standard coarse-to-fine scheme, in which the flow
is estimated at increasing resolutions [5,7]. At each level, the flow is iteratively estimated by a
number of warping steps. In the first iteration, the flow is estimated at the coarsest resolution
directly between downsampled images. At each successive resolution, the images are warped by
the previous estimate. In the remainder of this section, we focus on flow estimation during a
single step of this multiresolution refinement.

At a given resolution, we estimate the flow u between the warped images iteratively, ini-
tializing it with the previous estimate u0. At step k + 1, for k ≥ 0, we express the flow as
uk+1 = uk +∆uk. Our goal is to find a displacement ∆uk that satisfies

∇∆ukE(uk +∆uk) = 0. (2)

Due to the complexity of the energy function E, this expression does not admit a direct solution,
even if the nonlocal term EN is not taken into account. We thus linearize the gradient around uk,
reducing Equation 2 to a linear system [11,19]. For the data term ED and the local regularization
term ES , the gradients are linearized as described by Papenberg et al. [11]. If the nonlocal term
EN is not present, this yields a sparse linear system that can be solved with standard techniques.
We will describe how to solve (2) efficiently when the nonlocal term is present.

Our first step will be to linearize the gradient ∇∆ukEN (uk +∆uk), thus converting (2) to
a linear system. Unfortunately, due to the nonlocal term, the resulting system is dense. We will
use the structure of the gradient to develop a linear-time algorithm for solving the system.

To linearize the gradient ∇EN , we begin with a simple variable substitution ρN (x) = ψN (x2).
This yields the following expression for the components of the gradient:

∂

∂∆uki
EN (uk +∆uk) = 2

∑
j 6=i

wij
(
uki +∆uki − ukj −∆ukj

)
ψ′N

((
uki +∆uki − ukj −∆ukj

)2)
. (3)

Consider first the case of quadratic penalties ρN (x) = x2. In this case, the derivative terms
ψ′N (·) in Equation 3 are constant (ψ′N (·) = 1), the gradient ∇EN is linear in ∆uk, and no further
linearization is necessary. We will come back to this special case in Section 3.1.
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To linearize the gradient with general penalty functions ρN (x), we follow Papenberg et al. [11]
and use a fixed point iteration to compute ∆uk. We initialize this inner iteration with ∆uk,0 = 0.
At each step l + 1, for l ≥ 0, we compute a displacement vector ∆uk,l+1 that satisfies

∇∆uk,l+1E(uk +∆uk,l+1) = 0, (4)

where

∂

∂∆uk,l+1
i

EN (uk +∆uk,l+1) = 2
∑
j 6=i

wij

(
uki +∆uk,l+1

i − ukj −∆u
k,l+1
j

)
ψ′N

((
uki +∆uk,li − u

k
j −∆u

k,l
j

)2)
. (5)

This assumes that the derivative terms ψ′N (·) are approximately constant for small changes in
the flow displacement [11]. The terms ψ′N (·) in Equation 5 are constant with respect to ∆uk,l+1,
thus Equation 4 is a linear system. Specifically, we can express Equation 4 as

(A+B)∆uk,l+1 = wA + wB , (6)

where B∆uk,l+1 −wB is the sum of the linearized gradients of ED and ES , and A and wA are
defined as follows:

Aij = −wijψ′N
((

uki +∆uk,li − u
k
j −∆u

k,l
j

)2)
for i 6= j

Aii =
∑
j 6=i

wijψ
′
N

((
uki +∆uk,li − u

k
j −∆u

k,l
j

)2)
wA = −Auk (7)

We solve the linear system (6) using the conjugate gradient algorithm with Jacobi precondi-
tioning [14]. Each step of the algorithm requires multiplying a conjugate vector p by the matrix
A + B. Since B is sparse, the product Bp can be computed in time linear in the number of
pixels. The matrix A, however, is dense and naive computation of the product Ap is in general
infeasible. In the remainder of this section we show that the product Ap can be computed with a
small constant number of high-dimensional Gaussian filtering operations. These operations can
be performed in linear time and are extremely efficient in practice [1,9].

In Section 3.1 we introduce the algorithm in the special case of quadratic penalties. In Section
3.2 we generalize the approach to other penalty functions.

3.1 Quadratic nonlocal penalties

We first show how to efficiently compute the product q = Ap, for an arbitrary vector p, in the
case of quadratic penalties ρN (x) = x2. Each component of the product has the following form:

qi =
∑
j

Aijpj = pi
∑
j

k(fi, fj)−
∑
j

k(fi, fj)pj . (8)

Here we use the definitions wij = k(fi, fj) and ψ′N (x) = 1. The computation of Ap is expensive
due to the summations

∑
j k(fi, fj) and

∑
j k(fi, fj)pj , which must be performed for each i. These

summations can be written in a more general form as

ṽi =
∑
j

k(fi, fj)vj , (9)
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Fig. 2: Three penalty functions commonly used in optical flow estimation (blue) and mixtures of five
exponentials fit to these functions (red). In this illustration, the functions are truncated at T = 1. Each
inset shows a 100× magnification around x = 0.

where vj = 1 in the first summation and vj = pj in the second.
Equation 9 describes a high-dimensional Gaussian filter, which can be evaluated for all ṽi

simultaneously in linear time [12,1,9]. Our implementation uses the permutohedral lattice to
perform efficient approximate high-dimensional filtering [1]. The product Ap can thus be com-
puted in linear time using two high-dimensional filtering operations in feature space.

3.2 General nonlocal penalties

For general nonlocal penalty functions ρN , the derivative ψ′N is no longer a fixed constant. In
particular, the derivative terms ψ′N (·) in Equation 7 vary with the indices i, j. Thus the matrix
multiplication Ap cannot be immediately reduced to Gaussian filtering as in Section 3.1.

Approximation with exponential mixtures. To efficiently handle arbitrary penalty functions, we
approximate them using mixtures of exponentials of the form exp(−x2/2σ2). Specifically, a
penalty function ρ(x) is approximated as

ρ(x) ≈ µω,σ(x) = T −
K∑
n=1

ωn exp

(
− x2

2σ2
n

)
, (10)

where K is the number of exponentials in the mixture, ω is the vector of mixture weights, σ is
the vector of exponential parameters, and T is a constant.

Exponential mixtures are closely related to Gaussian Scale Mixtures (GSM) [2,13], which have
been used to approximate very general objective terms for optical flow [19]. The key difference
is that we use exponential mixtures to approximate energy objectives, while GSMs have been
traditionally used to model probability distributions.

Note that the range of the mixture in Equation 10 is bounded by [T −
∑
n ωn, T ]. This means

that we can only approximate truncated penalty functions, where T is the truncation value. In
practice, this is not a limitation since we can choose a truncation value that bounds the range
of our variables from above. Our implementation uses the constant T = 50.

We fit the parameters ω,σ of the mixture by minimizing the error∫ ∞
−∞

(
µω,σ(x)− ρ̃(x)

)2
dx, (11)

where ρ̃(x) is the truncated penalty ρ̃(x) = min(T, ρ(x)). We minimize the error function us-
ing a continuous version of the Levenberg-Marquardt algorithm. This optimization procedure is
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described in detail in the supplementary material. Empirically, we have found that the approx-
imation error decreases exponentially with K. Figure 2 shows exponential mixtures fit to some
of the most common penalty functions used in optical flow estimation.

Reduction to high-dimensional filtering. We now show how to perform the matrix multiplication
Ap efficiently when the penalty ρN is approximated by an exponential mixture µω,σ(x). In this
case, ψ(x) = T −

∑
n ωn exp(−x/2σ2

n) and ψ′(x) =
∑
n
ωn

2σ2
n

exp(− x
2σ2

n
). Each component of the

product q = Ap thus has the form

qi =
∑
j

Aijpj =
∑
n

ωn
2σ2

n

(
pi
∑
j

k(fi, fj) exp

(
−

(
uk
i +∆u

k,l
i −uk

j −∆u
k,l
j

)2

2σ2
n

)
−

∑
j

k(fi, fj) exp

(
−

(
uk
i +∆u

k,l
i −uk

j −∆u
k,l
j

)2

2σ2
n

)
pj

)
. (12)

To efficiently compute all terms qi, consider extended feature vectors
f̃i = [fi, u

k
i +∆uk,li ] and define a new convolution kernel k̃ in this higher-dimensional space:

k̃(f̃i, f̃j) = k(fi, fj) exp

(
− (uk

i +∆u
k,l
i −u

k
j−∆u

k,l
j )

2

2σ2
n

)
.

Equation 12 then takes the form

qi =
∑
n

ωn
2σ2

n

pi∑
j

k̃(f̃i, f̃j)−
∑
j

k̃(f̃i, f̃j)pj

 . (13)

k̃ is a product of two Gaussians and is thus a Gaussian kernel in the extended feature space.
Thus each of the two sums

∑
j k̃(f̃i, f̃j) and

∑
j k̃(f̃i, f̃j)pj can be evaluated for all i in linear time,

as in Section 3.1. The computation of the product Ap reduces to 2K efficient high-dimensional
filtering operations. For optical flow estimation, we found K = 3 to be sufficient.

4 Implementation

We preprocess the images by applying a structure-texture decomposition, in order to reduce the
effect of illumination changes [3,21]. The structure is obtained using the Rudin-Osher-Fatemi
denoising model [16]. The texture is the difference between the original image and the structure.
The texture is blended with the original image (blending weight 0.05 for the original), and
the blended image serves as input for optical flow estimation. This preprocessing procedure is
identical to the one described by Wedel et al. [21].

We use color constancy for the data term: ED(u) =
∑
i ρD(I2(pi + ui)− I1(pi)). Here I1 and

I2 are the images obtained by the above preprocessing procedure, pi is the position of pixel i,
and ρD is the data penalty function.

We employ a standard graduated nonconvexity (GNC) scheme in the outer loop of the opti-
mization [6,5]. We use a parameterized objective of the form Eα(u) = (1 − α)EQ(u) + αE(u),
where EQ(u) uses quadratic penalties in all objective terms [19]. We perform three GNC steps,
with α ∈ {0, 0.5, 1}. For the first GNC step, we use the algorithm described in Section 3.1. Each
subsequent GNC step is initialized with the flow computed in the previous step.

For coarse-to-fine estimation, we use a downsampling factor of 0.5 in the first GNC step and
0.8 in subsequent steps. We scale the spatial standard deviation σx of the nonlocal regularizer at
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Method w/o MF MF WMF Runtime (sec)

Horn-Schunck 0.426 0.383 0.279 54
Horn-Schunck + NL 0.390 0.297 0.254 123

Lorentzian 0.406 0.346 0.261 173
Lorentzian + NL 0.358 0.304 0.249 678

Charbonnier 0.307 0.292 0.222 173
Charbonnier + NL 0.270 0.252 0.210 678

Generalized Charbonnier 0.307 0.287 0.222 173
Generalized Charbonnier + NL 0.272 0.252 0.208 678

Table 1: Average endpoint error on the Middelbury training set, with different penalty functions and
with or without nonlocal regularization. Each model was optimized without intermediate filtering of
the flow field (w/o MF), with a median filtering step after each warping iteration (MF), and with
weighted median filtering (WMF). Runtime is reported for WMF and is averaged over the training set.
Experiments were performed on a single CPU core.

each resolution, to keep a fixed nonlocal range of influence throughout the optimization. We use
three warping iterations per resolution. After each warping step, we can use a median filter to
remove outliers, as proposed by Wedel et al. [21]. In Section 5, we evaluate three variants of the
optimization procedure: without a median filter, with a median filter [21], and with a weighted
median filter [18].

There are two common ways to formulate regularization terms for optical flow. One approach
penalizes the horizontal and vertical components of the flow field separately [5,15,19,18]. The
other approach penalizes differences between complete flow vectors [11,7]. We found the former
approach to work better in practice and use it in all our experiments.

5 Results

Experiments were performed on the Middlebury optical flow benchmark [4], using a single core
of an Intel i7-930 CPU clocked at 2.8GHz. We evaluated several versions of the model (1),
using different penalty functions: the quadratic penalty ρ(x) = x2 [8], the Lorentzian ρ(x) =
log (1 + x2/2ε2) [5], the Charbonnier ρ(x) =

√
x2 + ε2 [7,11], and a generalized Charbonnier

penalty ρ(x) = (x2 + ε2)α [18]. For each type of penalty, we evaluated the model with and
without the nonlocal term. For each model, we evaluated three variants of the optimization
procedure: without a median filtering step, with an unweighted median filter [21], and with a
weighted median filter [18]. For the Charbonnier penalties we used ε = 0.001, for the generalized
Charbonnier we used α = 0.45, and for the Lorentzian we used ε = 1.5 for the data term
and ε = 0.03 for the regularization terms. The nonlocal penalty terms were approximated with
mixtures of K = 3 exponentials. Table 1 shows the average endpoint error achieved by the
different models and optimization procedures on the Middlebury training set.

The results indicate that nonlocal regularization substantially reduces the error for all eval-
uated models, even when median (or weighted median) filtering is applied to the flow field at
intermediate steps. The median filter and the nonlocal regularization optimize different objectives
and thus complement each other. The median filter enforces a smoothness constraint indepen-
dently of any energy terms, including the data term. Due to this independence it is better able
to remove strong outliers in the flow field. The nonlocal regularization on the other hand finds a
smooth flow field that simultaneously minimizes the data term. If an outlier has a strong local
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Fig. 3: (a,b) Average endpoint error and average angular error on the Middlebury training set with
varying color standard deviation σc and nonlocal weight λN . (c) Average error as a function of σc,
with optimal λN for each value of σc. The spatial standard deviation was fixed at σx = 9.

data term, neither the local nor the nonlocal regularization will be able to remove it. The combi-
nation of the two techniques is able to both remove outliers and ensure a smooth flow field that
respects the data term.

The classical Horn-Schunck model with quadratic penalties performs surprisingly well when
nonlocal regularization is added, even with the non-robust quadratic penalty in the nonlocal
term. The Lorentzian improves on the quadratic penalty, but the improvement is much more
significant for the Charbonnier and the generalized Charbonnier. This may be related to the
sharp non-convexity of the Lorentzian penalty [18].

For subsequent experiments reported in this section, we use the best-performing model and
optimization procedure, with generalized Charbonnier penalties, weighted median filtering, and
nonlocal regularization. At the time of submission, this model is ranked 5th on both average
endpoint error and average angular error on the Middlebury test set.

Nonlocal term. To evaluate the influence of the color and spatial components in the nonlocal
term, we systematically varied the standard deviations σc and σx. The results are shown in
Figures 3 and 4.

The color standard deviation σc controls the adaptivity of the nonlocal term to the image:
an excessively large σc yields an isotropic nonlocal regularizer that does not respect object
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Fig. 4: (a,b) Average endpoint error and average angular error on the Middlebury training set with
varying spatial standard deviation σx and nonlocal weight λN . To clearly show the behavior around the
optimal parameter values, the vertical axis is scaled as a function of σx. Specifically, the vertical axis is
parameterized by λ̃N = λNσ

2
x. (c) Average error as a function of σx, with optimal λN for each value of

σx. The color standard deviation was fixed at σc = 8.
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Fig. 5: Running time on the Urban dataset from the Middlebury benchmark, compared to a baseline
implementation that operates on individual pairwise connections. Experiments were performed on a
single CPU core.

boundaries, while an excessively small σc yields an overly conservative regularizer that is unable
to bridge small color differences. We found the optimal value to be σc = 8.

The spatial standard deviation σx controls the range of influence of the nonlocal term. We
found the optimal value to be σx = 9. The influence of the nonlocal term is nontrivial at distances
up to roughly 2σx. (See also Figure 1.) Thus, the nonlocal regularizer connects each pixel to all
pixels within a neighborhood of size roughly 4σx×4σx. At σx = 9, the nonlocal term can establish
significant connections from each pixel to roughly 1000 other pixels. Thus even if the influence of
the nonlocal term is truncated at distance 2σx = 18, the matrix A in Section 3 can have roughly
103N nonzero entries, where N is the number of pixels in the image.

Running time. Table 1 shows the average running time of our algorithm on the Middlebury train-
ing set with and without nonlocal regularization. For the Horn-Schunck model with quadratic
penalties, the running time with nonlocal regularization is roughly 2.3 times higher than the
running time for the local model. This reflects the overhead of performing two high-dimensional
Gaussian filtering operations per optimization step. For general penalty functions, this factor
grows to 4 and each optimization step involves six filtering operations.

Figure 5 compares the running time of our algorithm to a straightforward implementation
of the nonlocal regularizer. The baseline implementation decomposes the nonlocal term into a
collection of sparse matrices. For the baseline implementation, we truncate the nonlocal term at
2σx, limiting its influence to a patch of size (4σx + 1) × (4σx + 1) around each pixel. We also
optimized the baseline implementation by disregarding pairwise connections with low weight wij .
The running time of the baseline implementation grows quadratically with σx and is 7 hours for
σx = 9, compared to 8 minutes for our algorithm. For σx = 17, the baseline implementation
takes 24 hours, while our algorithm runs in 7 minutes. The gradual improvement in the running
time of our algorithm with the growth of σx is due to the increased efficiency of high-dimensional
Gaussian filtering for larger kernel sizes. Intuitively, since the maximal frequency component of
the convolved function is lower, the function can be reconstructed from a sparser set of samples.

Exponential mixture approximation. We now evaluate the effect of the exponential mixture ap-
proximation described in Section 3.2. Given a penalty function ρ(x) and an exponential mixture
µ(x), we define the average approximation error over a domain Ω as 1

|Ω|
∫
Ω
|ρ(x)−µ(x)|dx. Figure

6 shows the average approximation error for K-kernel exponential mixtures fit to the generalized
Charbonnier penalty truncated at T = 1. The mixtures were fit to minimize the error over the
entire real line (Equation 11). The approximation error decreases exponentially with the number
of kernels until it stabilizes at a certain value. Most of the error lies close to the truncation
boundary. Over the real line Ω = R, the approximation error reaches 5.4× 10−2 with 2 kernels
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Fig. 6: (a) Average approximation error for a K-kernel exponential mixture fit to a generalized Char-
bonnier penalty, as a function of K. (b) Average approximation error on a log scale. (c) A 3-kernel
approximation to the generalized Charbonnier penalty truncated at T = 1.
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Fig. 7: Effect of the number of exponential functions used to approximate the nonlocal penalty on (a)
the running time of the algorithm, (b) average endpoint error on the Middlebury training set, and (c)
average angular error.

and stabilizes around that value. For Ω = [−0.1, 0.1] the approximation error stabilizes around
6× 10−4, and for Ω = [−0.01, 0.01] the approximation error drops to 6× 10−5 with 5 kernels.

Figure 7 shows the effect of the number of kernels K on the performance of our algorithm.
As shown in Figure 7a, the running time increases linearly with K. As shown in Figure 7b, the
average endpoint error is very low even for a 1-kernel approximation to the nonlocal penalty
term, suggesting that the overall v-shape of the nonlocal penalty is more important than its
exact form. The error is minimized with 3 kernels and increases slightly with K > 3. This is
likely due to the sharp minimum of the generalized Charbonnier penalty, which favors regions
of constant flow. As observed by Werlberger et al. [23], rounding this peak allows for smoother
flow. This is the effect achieved by the 3-kernel approximation, as shown in Figure 6c.

6 Conclusion

We presented an efficient optimization algorithm for optical flow models with nonlocal regular-
ization. The computational complexity of the algorithm is linear in the size of the image and is
independent of the number of nonlocal connections. The algorithm is simple to implement and
can be parallelized for further performance gains [25,21].

We believe that the presented techniques can enhance other models for optical flow estimation.
In particular, it would be interesting to integrate nonlocal regularization with high-performing
layer-based approaches [20]. The integration of more robust data terms such as patch-based
normalized cross correlation can lead to further improvements in accuracy [23].
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(a) Image (b) Generalized
Charbonnier

(c) Generalized
Charbonnier + NL

(d) Ground truth

Fig. 8: Optical flow estimation on the Middlebury test set. Nonlocal regularization visibly improves
estimation accuracy in the demarcated regions.
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